login
A081682
a(n) = (9^n - 8^n - 7^n - 6^n + 4*5^n)/2.
1
1, 4, 16, 79, 634, 7099, 83746, 947419, 10193794, 105291979, 1054581826, 10323156859, 99334276354, 943521561259, 8873286384706, 82805541911899, 768050761613314, 7089438235180939, 65182761011000386, 597402284308532539, 5460838499719484674, 49808520814283367019, 453476009939755916866
OFFSET
0,2
COMMENTS
Binomial transform of A081681.
FORMULA
G.f.: -(3603*x^4-1866*x^3+361*x^2-31*x+1)/((5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)). - Colin Barker, Sep 07 2012
From Elmo R. Oliveira, Sep 13 2024: (Start)
E.g.f.: exp(5*x)*(exp(4*x) - exp(3*x) - exp(2*x) - exp(x) + 4)/2.
a(n) = 35*a(n-1) - 485*a(n-2) + 3325*a(n-3) - 11274*a(n-4) + 15120*a(n-5) for n > 4. (End)
CROSSREFS
Sequence in context: A362750 A356406 A009318 * A068788 A094013 A106568
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 30 2003
EXTENSIONS
a(20)-a(22) from Elmo R. Oliveira, Sep 13 2024
STATUS
approved