login
A081684
a(n) = 5^n - 4^n - 3^n - 2^n + 3.
1
1, -1, -1, 29, 275, 1829, 10739, 59429, 318275, 1670789, 8656979, 44454629, 226827875, 1151991749, 5830280819, 29429454629, 148249811075, 745630312709, 3745590106259, 18797445635429, 94264432179875, 472428649241669, 2366562219717299, 11850466059333029, 59322887352366275, 296896476647946629
OFFSET
0,4
COMMENTS
Inverse binomial transform of A081685.
FORMULA
G.f.: (-1-254*x^4+266*x^3-99*x^2+16*x)/((x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(5*x-1)) [From Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009]
From Elmo R. Oliveira, Sep 12 2024: (Start)
E.g.f.: exp(x)*(exp(4*x) - exp(3*x) - exp(2*x) - exp(x) + 3).
a(n) = 15*a(n-1) - 85*a(n-2) + 225*a(n-3) - 274*a(n-4) + 120*a(n-5) for n > 4. (End)
MATHEMATICA
Table[5^n-4^n-3^n-2^n+3, {n, 0, 40}] (* Harvey P. Dale, Apr 01 2011 *)
CROSSREFS
Cf. A081685.
Sequence in context: A120823 A186263 A110692 * A142033 A142905 A153175
KEYWORD
easy,sign
AUTHOR
Paul Barry, Mar 30 2003
EXTENSIONS
a(24)-a(25) from Elmo R. Oliveira, Sep 12 2024
STATUS
approved