login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081490
Leading term of n-th row of A081491.
4
1, 2, 4, 9, 19, 36, 62, 99, 149, 214, 296, 397, 519, 664, 834, 1031, 1257, 1514, 1804, 2129, 2491, 2892, 3334, 3819, 4349, 4926, 5552, 6229, 6959, 7744, 8586, 9487, 10449, 11474, 12564, 13721, 14947, 16244, 17614, 19059, 20581, 22182, 23864, 25629
OFFSET
1,2
COMMENTS
First differences are given by A002522 = n^2 + 1. Second differences are odd numbers given by A005408.
a(1)=1, a(2)=2, (a(n+1) -a(n)) - (a(n) -a(n-1)) = 2*(n-1)-1. - Ben Paul Thurston, Aug 22 2009
FORMULA
a(1) = 1, a(n) = A081489(n-1) + 1.
From R. J. Mathar, Feb 06 2010: (Start)
G..f: x*(1-2*x+2*x^2+x^3)/(x-1)^4.
a(n) = n*(2*n^2 -9*n +19)/6 -1. (End)
a(n) = (n-2)^2 + a(n-1)+1, n>1. - Gary Detlefs, Jun 29 2010
a(1)=1, a(2)=2, a(3)=4, a(4)=9, a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Harvey P. Dale, Apr 30 2011
MAPLE
with (combinat):a:=n->sum(fibonacci(3, i), i=0..n):seq(a(n)+1, n=-1..42); # Zerinvary Lajos, Apr 25 2008
MATHEMATICA
Rest[CoefficientList[Series[x (1-2x+2x^2+x^3)/(x-1)^4, {x, 0, 50}], x]] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 2, 4, 9}, 50] (* Harvey P. Dale, Apr 30 2011 *)
PROG
(PARI) vector(50, n, (2*n^3-9*n^2+19*n-6)/6) \\ G. C. Greubel, Aug 13 2019
(Magma) [(2*n^3-9*n^2+19*n-6)/6: n in [1..50]]; // G. C. Greubel, Aug 13 2019
(Sage) [(2*n^3-9*n^2+19*n-6)/6 for n in (1..50)] # G. C. Greubel, Aug 13 2019
(GAP) List([1..50], n-> (2*n^3-9*n^2+19*n-6)/6); # G. C. Greubel, Aug 13 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Mar 25 2003
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 29 2003
STATUS
approved