login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A081489 a(n) = n*(2*n^2 -3*n +7)/6 = C(n, 1) + C(n, 2) + 2*C(n, 3). 10
1, 3, 8, 18, 35, 61, 98, 148, 213, 295, 396, 518, 663, 833, 1030, 1256, 1513, 1803, 2128, 2490, 2891, 3333, 3818, 4348, 4925, 5551, 6228, 6958, 7743, 8585, 9486, 10448, 11473, 12563, 13720, 14946, 16243, 17613, 19058, 20580, 22181, 23863, 25628 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Diagonal of triangle in A081491.

First difference is given by A002522 = n^2 + 1. Second difference is odd numbers given by A005408.

With offset 0, this is the binomial transform of (0,1,1,2,0,0,0,...). - Paul Barry, Jul 03 2003

Equals row sums of triangle A144337. - Gary W. Adamson, Sep 18 2008

a(n) = sum of first (n-1) squares + n; e.g., a(5) = 35 = (1 + 4 + 9 + 16 + 5). - Gary W. Adamson, Aug 27 2010

Equals the number of functions from {1,2,...,n} to {1,2,...,n} that occur as compositions of U(x) = min{x+1,n} and D(x) = max{x-1,1}, including the identity function (the empty composition). Problem 11901 in The American Mathematical Monthly, volume 123, page 399, April 2016), proposed by Don Knuth, asked for the count of such functions (solution submitted to Monthly by Jerrold W. Grossman and Serge Kruk, August 21, 2016). - Jerrold Grossman, Aug 21 2016

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Jerrold W. Grossman and Serge Kruk, Solution to Problem 11901 in The American Mathematical Monthly, 2016

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = n*(2*n^2 -3*n +7)/6 = C(n, 1) + C(n, 2) + 2*C(n, 3). - Paul Barry, Jul 03 2003

E.g.f.: exp(x)*(x +x^2/2 +x^3/3).

O.g.f.: x*(1-x+2*x^2)/(1-x)^4. - Colin Barker, Jul 28 2012

a(n) = 2*n + Sum_{i=1..n} (i^2 - 2*i). - Wesley Ivan Hurt, Feb 25 2014

MAPLE

with(combinat):a:=n->sum(fibonacci(3, i), i=0..n): seq(a(n), n=0..42); # Zerinvary Lajos, Mar 20 2008

MATHEMATICA

Table[n*(2*n^2-3*n+7)/6, {n, 50}] (* Vladimir Joseph Stephan Orlovsky, Nov 07 2008, modified by G. C. Greubel, Aug 13 2019 *)

PROG

(PARI) my(x='x+O(x^50)); Vec(serlaplace(exp(x)*(x+x^2/2+x^3/3)))

(MAGMA) I:=[1, 3, 8, 18]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Feb 28 2014

(Sage) [n*(2*n^2-3*n+7)/6 for n in (1..50)] # G. C. Greubel, Aug 13 2019

(GAP) List([1..50], n-> n*(2*n^2-3*n+7)/6); # G. C. Greubel, Aug 13 2019

CROSSREFS

Cf. A002522, A005408, A081490, A081491, A081492, A144337.

Sequence in context: A083726 A319006 A212589 * A055278 A293349 A036628

Adjacent sequences:  A081486 A081487 A081488 * A081490 A081491 A081492

KEYWORD

nonn,easy

AUTHOR

Amarnath Murthy, Mar 25 2003

EXTENSIONS

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 29 2003

New name, using the formulas of Paul Barry, Joerg Arndt, Feb 28 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 22 22:19 EDT 2021. Contains 343197 sequences. (Running on oeis4.)