This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A081172 Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 1, a(1) = 1, a(2) = 0. 35
 1, 1, 0, 2, 3, 5, 10, 18, 33, 61, 112, 206, 379, 697, 1282, 2358, 4337, 7977, 14672, 26986, 49635, 91293, 167914, 308842, 568049, 1044805, 1921696, 3534550, 6501051, 11957297, 21992898, 40451246, 74401441, 136845585, 251698272, 462945298, 851489155 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Completes the set of tribonacci numbers starting with 0's and 1's in the first three terms: 0,0,0 A000004; 0,0,1 A000073; 0,1,0 A001590; 0,1,1 A000073 starting at a(1); 1,0,0 A000073 starting at a(-1); 1,0,1 A001590; 1,1,0 this sequence; 1,1,1 A000213. LINKS Harry J. Smith, Table of n, a(n) for n = 0..500 Martin Burtscher, Igor Szczyrba, RafaĆ Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5. N. G. Voll, Some identities for four term recurrence relations, Fib. Quart., 51 (2013), 268-273. Index entries for linear recurrences with constant coefficients, signature (1,1,1). FORMULA From R. J. Mathar, Mar 27 2009: (Start) G.f.: (1-2*x^2)/(1 - x - x^2 - x^3). a(n) = A000073(n+2) - 2*A000073(n). (End) MAPLE A081172 := proc(n)     option remember;     if n <= 2 then         op(n+1, [1, 1, 0]) ;     else         add(procname(n-i), i=1..3) ;     end if; end proc: # R. J. Mathar, Aug 09 2012 MATHEMATICA LinearRecurrence[{1, 1, 1}, {1, 1, 0}, 40] (* Vladimir Joseph Stephan Orlovsky, Jun 07 2011 *) PROG (PARI) { a1=1; a2=1; a3=0; write("b081172.txt", 0, " ", a1); write("b081172.txt", 1, " ", a2); write("b081172.txt", 2, " ", a3); for(n=3, 500, a=a1+a2+a3; a1=a2; a2=a3; a3=a; write("b081172.txt", n, " ", a) ) } \\ Harry J. Smith, Mar 20 2009 (PARI) my(x='x+O('x^40)); Vec((1-2*x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 23 2019 (MAGMA) R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-2*x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 23 2019 (Sage) ((1-2*x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019 (GAP) a:=[1, 1, 0];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 23 2019 CROSSREFS Cf. A000004, A000073, A000213, A001590, A020992. Sequence in context: A195507 A117222 A199594 * A318301 A030032 A002661 Adjacent sequences:  A081169 A081170 A081171 * A081173 A081174 A081175 KEYWORD nonn,easy AUTHOR Harry J. Smith, Apr 19 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 14:36 EDT 2019. Contains 326152 sequences. (Running on oeis4.)