login
A081079
Lucas(4n+2) - 3, or 5*Fibonacci(2n)*Fibonacci(2n+2).
0
0, 15, 120, 840, 5775, 39600, 271440, 1860495, 12752040, 87403800, 599074575, 4106118240, 28143753120, 192900153615, 1322157322200, 9062201101800, 62113250390415, 425730551631120, 2918000611027440, 20000273725560975
OFFSET
0,2
REFERENCES
Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.
FORMULA
a(n) = 8a(n-1) - 8a(n-2) + a(n-3).
G.f.: -15*x/(x-1)/(x^2-7*x+1). a(n) = 15*A092521(n) = 5*A058038(n). - R. J. Mathar, Sep 03 2010
MAPLE
luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 40 do printf(`%d, `, luc(4*n+2)-3) od: # James A. Sellers, Mar 05 2003
MATHEMATICA
LinearRecurrence[{8, -8, 1}, {0, 15, 120}, 20] (* Jean-François Alcover, Nov 29 2023 *)
CROSSREFS
Cf. A000032 (Lucas numbers), A000045 (Fibonacci numbers).
Sequence in context: A010967 A022580 A321950 * A138424 A279267 A357602
KEYWORD
nonn,easy
AUTHOR
R. K. Guy, Mar 04 2003
STATUS
approved