login
A022580
Expansion of Product_{m>=1} (1+x^m)^15.
2
1, 15, 120, 695, 3285, 13443, 49305, 165795, 519240, 1531960, 4295046, 11520000, 29718605, 74060355, 178930605, 420368858, 962785560, 2154411120, 4718952965, 10134292275, 21369644184, 44300604895, 90390209685, 181706747280, 360207189225, 704726281002, 1361748557400
OFFSET
0,2
LINKS
FORMULA
a(n) ~ 5^(1/4) * exp(Pi * sqrt(5*n)) / (512 * n^(3/4)). - Vaclav Kotesovec, Mar 05 2015
a(0) = 1, a(n) = (15/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+q^m)^15, {m, 1, nmax}], {q, 0, nmax}], q] (* Vaclav Kotesovec, Mar 05 2015 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1+q^n)^15)) \\ G. C. Greubel, Feb 25 2018
(Magma) Coefficients(&*[(1+x^m)^15:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 25 2018
CROSSREFS
Column k=15 of A286335.
Sequence in context: A162635 A247612 A010967 * A321950 A081079 A138424
KEYWORD
nonn
STATUS
approved