login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080956 a(n) = (n+1)*(2-n)/2. 23
1, 1, 0, -2, -5, -9, -14, -20, -27, -35, -44, -54, -65, -77, -90, -104, -119, -135, -152, -170, -189, -209, -230, -252, -275, -299, -324, -350, -377, -405, -434, -464, -495, -527, -560, -594, -629, -665, -702, -740, -779, -819, -860, -902, -945, -989, -1034, -1080, -1127, -1175, -1224, -1274, -1325, -1377 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Coefficient of x in the polynomial C(n,0)+C(n+1,1)x+C(n+2,2)x(x-1)/2.

Equals A154990 * [1,2,3,...]. - Gary W. Adamson & Mats Granvik, Jan 19 2009

a(n) is essentially the case 1 of the polygonal numbers. The polygonal numbers are defined as P_k(n) = Sum_{i=1..n} ((k-2)*i-(k-3)). Thus P_1(n) = n*(3-n)/2 and a(n) = P_1(n+1). See A005563 for the case k=0. - Peter Luschny, Jul 08 2011

This is the case k=-1 of the formula (k*m*(m+1)-(-1)^k+1)/2. See similar sequences listed in A262221. [Bruno Berselli, Sep 17 2015]

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = 2*(C(n+1, 1)-C(n+2, 2)) = (n+1)*(2-n)/2.

G.f.: (1-2*x)/(1-x)^3. - R. J. Mathar, Jun 11 2009

If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n) = f(n,n-1,2), for n>=3. - Milan Janjic, Dec 20 2008

E.g.f.: exp(x)*(1-x^2/2). - Zerinvary Lajos, Apr 05 2009, R. J. Mathar, Jun 11 2009

a(n) = - A214292(n,1) for n > 0. - Reinhard Zumkeller, Jul 12 2012

Recurrence: a(0)=1, a(n+1) = a(n) - n. Also a(n)=(n+1)-Sum[k=1..n](k). Also a(n) = A000027(n+1) - A000217(n). Also, for n>1, a(n) = - A000096(n-2). - Stanislav Sykora, Feb 19 2014

EXAMPLE

a(5) = 6-(1+2+3+4+5). - Stanislav Sykora, Feb 19 2014

MAPLE

G(x):=exp(x)*(x-x^2/2): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=1..54 ); # Zerinvary Lajos, Apr 05 2009

MATHEMATICA

f[n_] := n; lst = {}; Do[a = f[n]; Do[a -= f[m], {m, n - 1, 1, -1}]; AppendTo[lst, a], {n, 46}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 10 2010 *)

FoldList[#1 - #2 &, 1, Range[0, 44]] (* Arkadiusz Wesolowski, May 26 2013 *)

PROG

(MAGMA) [(n+1)*(2-n)/2: n in [0..80]]; // Vincenzo Librandi, Jul 08 2011

(PARI) a(n)=(n+1)*(2-n)/2;

CROSSREFS

Cf. A000027, A000096, A000217, A154990, A262221.

Sequence in context: A132336 A272370 A212342 * A132337 A000096 A134189

Adjacent sequences:  A080953 A080954 A080955 * A080957 A080958 A080959

KEYWORD

sign,easy

AUTHOR

Paul Barry, Mar 01 2003

EXTENSIONS

Lajos e.g.f. adapted to offset zero by R. J. Mathar, Jun 11 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 22:32 EST 2017. Contains 295054 sequences.