The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A080877 a(n)*a(n+3) - a(n+1)*a(n+2) = 2^n, given a(0)=1, a(1)=1, a(2)=2. 6
 1, 1, 2, 3, 8, 14, 40, 72, 208, 376, 1088, 1968, 5696, 10304, 29824, 53952, 156160, 282496, 817664, 1479168, 4281344, 7745024, 22417408, 40553472, 117379072, 212340736, 614604800, 1111830528, 3218112512, 5821620224, 16850255872 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Index entries for linear recurrences with constant coefficients, signature (0, 6, 0, -4). FORMULA G.f.: (-3*x^3 - 4*x^2 + x + 1)/(4*x^4 - 6*x^2 + 1) a(n + 4) = 6*a(n + 2) - 4*a(n) [From Richard Choulet, Dec 06 2008] a(n) = ( - 1/20*5^(1/2) + 1/16*5^(1/2)*2^(1/2) - 1/16*2^(1/2) + 1/4)*(sqrt(3 + sqrt(5)))^n + (1/20*5^(1/2) + 1/16*5^(1/2)*2^(1/2) + 1/16*2^(1/2) + 1/4)*(sqrt(3 - sqrt(5)))^n + ( - 1/20*5^(1/2) - 1/16*5^(1/2)*2^(1/2) + 1/16*2^(1/2) + 1/4)*( - (sqrt(3 + sqrt(5))))^n + (1/20*5^(1/2) - 1/16*5^(1/2)*2^(1/2) - 1/16*2^(1/2) + 1/4)*( - (sqrt(3 - sqrt(5))))^n [From Richard Choulet, Dec 07 2008] MATHEMATICA LinearRecurrence[{0, 6, 0, -4}, {1, 1, 2, 3}, 50] (* or *) CoefficientList[ Series[ (-3x^3-4x^2+x+1)/(4x^4-6x^2+1), {x, 0, 50}], x] (* Harvey P. Dale, May 02 2011 *) CROSSREFS Cf. A080876, A080878, A080879, A080880, A080881, A080882. Cf. A154626, A098648 (bisections). [From R. J. Mathar, Oct 26 2009] Sequence in context: A129700 A197466 A049344 * A007165 A107321 A005316 Adjacent sequences:  A080874 A080875 A080876 * A080878 A080879 A080880 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 22 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 04:15 EDT 2020. Contains 334859 sequences. (Running on oeis4.)