This site is supported by donations to The OEIS Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005316 Meandric numbers: number of ways a river can cross a road n times.
(Formerly M0874)
1, 1, 1, 2, 3, 8, 14, 42, 81, 262, 538, 1828, 3926, 13820, 30694, 110954, 252939, 933458, 2172830, 8152860, 19304190, 73424650, 176343390, 678390116, 1649008456, 6405031050, 15730575554, 61606881612, 152663683494, 602188541928, 1503962954930, 5969806669034, 15012865733351, 59923200729046, 151622652413194, 608188709574124, 1547365078534578, 6234277838531806, 15939972379349178, 64477712119584604, 165597452660771610, 672265814872772972, 1733609081727968492, 7060941974458061392 (list; graph; refs; listen; history; text; internal format)



Number of ways that a river (or directed line) that starts in the South-West and flows East can cross an East-West road n times (see the illustration).

Or, number of ways that an undirected line can cross a road with at least one end below the road.


Alon, Noga and Maass, Wolfgang, Meanders and their applications in lower bounds arguments. Twenty-Seventh Annual IEEE Symposium on the Foundations of Computer Science (Toronto, ON, 1986). J. Comput. System Sci. 37 (1988), no. 2, 118-129.

V. I. Arnol'd, A branched covering of CP^2->S^4, hyperbolicity and projective topology [ Russian ], Sibir. Mat. Zhurn., 29 (No. 2, 1988), 36-47 = Siberian Math. J., 29 (1988), 717-725.

V. I. Arnol'd, ed., Arnold's Problems, Springer, 2005; Problem 1989-18.

B. Bobier and J. Sawada, A fast algorithm to generate open meandric systems and meanders, ACM Transactions on Algorithms, Vol. 6, No. 2, 2010, article #42.

Di Francesco, P. The meander determinant and its generalizations. Calogero-Moser-Sutherland models (Montreal, QC, 1997), 127-144, CRM Ser. Math. Phys., Springer, New York, 2000.

Di Francesco, P., SU(N) meander determinants. J. Math. Phys. 38 (1997), no. 11, 5905-5943.

Di Francesco, P. Truncated meanders. Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), 135-162, Contemp. Math., 248, Amer. Math. Soc., Providence, RI, 1999.

Di Francesco, P. Meander determinants. Comm. Math. Phys. 191 (1998), no. 3, 543-583.

Di Francesco, P. Exact asymptotics of meander numbers. Formal power series and algebraic combinatorics (Moscow, 2000), 3-14, Springer, Berlin, 2000.

Di Francesco, P., Golinelli, O. and Guitter, E., Meanders. In The Mathematical Beauty of Physics (Saclay, 1996), pp. 12-50, Adv. Ser. Math. Phys., 24, World Sci. Publishing, River Edge, NJ, 1997.

Di Francesco, P., Golinelli, O. and Guitter, E. Meanders and the Temperley-Lieb algebra. Comm. Math. Phys. 186 (1997), no. 1, 1-59.

Di Francesco, P., Guitter, E. and Jacobsen, J. L. Exact meander asymptotics: a numerical check. Nuclear Phys. B 580 (2000), no. 3, 757-795.

Franz, Reinhard O. W. A partial order for the set of meanders. Ann. Comb. 2 (1998), no. 1, 7-18.

Franz, Reinhard O. W. and Earnshaw, Berton A. A constructive enumeration of meanders. Ann. Comb. 6 (2002), no. 1, 7-17.

Isakov, N. M. and Yarmolenko, V. I. Bounded meander approximations. (Russian) Qualitative and approximate methods for the investigation of operator equations (Russian), 71-76, 162, Yaroslav. Gos. Univ., 1981.

Lando, S. K. and Zvonkin, A. K. Plane and projective meanders. Conference on Formal Power Series and Algebraic Combinatorics (Bordeaux, 1991). Theoret. Comput. Sci. 117 (1993), no. 1-2, 227-241.

Lando, S. K. and Zvonkin, A. K. Meanders. In Selected translations. Selecta Math. Soviet. 11 (1992), no. 2, 117-144.

Makeenko, Y., Strings, matrix models and meanders. Theory of elementary particles (Buckow, 1995). Nuclear Phys. B Proc. Suppl. 49 (1996), 226-237.

A. Phillips, Simple Alternating Transit Mazes, unpublished. Abridged version appeared as La topologia dei labirinti, in M. Emmer, editor, L'Occhio di Horus: Itinerari nell'Imaginario Matematico. Istituto della Enciclopedia Italia, Rome, 1989, pp. 57-67.

J. A. Reeds and L. A. Shepp, An upper bound on the meander constant, preprint, May 25, 1999. [Obtains upper bound of 13.01]

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


I. Jensen and Andrew Howroyd, Table of n, a(n) for n = 0..55 (first 44 terms from I. Jensen)

David Bevan, Open Meanders [From David Bevan, Jun 25 2010]

P. Di Francesco, O. Golinelli and E. Guitter, Meander, folding and arch statistics, Combinatorics and physics (Marseilles, 1995). Math. Comput. Modelling 26 (1997), no. 8-10, 97-147.

Di Francesco, P., Golinelli, O. and Guitter, E., Meanders: exact asymptotics, Nuclear Phys. B 570 (2000), no. 3, 699-712.

Di Francesco, P., Golinelli, O. and Guitter, E., Meanders: a direct enumeration approach, Nuclear Phys. B 482 (1996), no. 3, 497-535.

Andrew Howroyd, C# Software for the enumeration of meanders

I. Jensen, Home page

I. Jensen, A transfer matrix approach to the enumeration of plane meanders, arXiv:cond-mat/0008178 [cond-mat.stat-mech], 2000.

I. Jensen, A transfer matrix approach to the enumeration of plane meanders, J. Phys. A 33, 5953-5963 (2000).

I. Jensen, Enumeration of plane meanders, arXiv:cond-mat/9910313 [cond-mat.stat-mech]

I. Jensen, Open meanders, a(n) for n = 0..43

I. Jensen and A. J. Guttmann, Critical exponents of plane meanders J. Phys. A 33, L187-L192 (2000).

M. La Croix, Approaches to the Enumerative Theory of Meanders [From Gerald McGarvey, Oct 26 2008]

S. Legendre, Foldings and Meanders, Aust. J. Comb. 58(2), 275-291, 2014.

A. Panayotopoulos, P. Vlamos, Partitioning the Meandering Curves, Mathematics in Computer Science (2015) p 1-10.

A. Phillips, Mazes

A. Phillips, Simple, Alternating, Transit Mazes

Frank Ruskey, Information on Stamp Foldings

J. Sawada and R. Li, Stamp foldings, semi-meanders, and open meanders: fast generation algorithms, Electronic Journal of Combinatorics, Volume 19 No. 2 (2012), P#43 (16 pages).

N. J. A. Sloane, Illustration of initial terms

N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).


a(2n) is A005315. Cf. A076875, A076906, A076907, A077014, A077054, A077055, A077056, A078591.

See also A078592.

Sequence in context: A080877 A007165 A107321 * A076876 A124495 A007919

Adjacent sequences:  A005313 A005314 A005315 * A005317 A005318 A005319




N. J. A. Sloane, St├ęphane Legendre


Computed to n = 43 by Iwan Jensen.



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified January 17 08:16 EST 2017. Contains 280876 sequences.