The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A080846 Fixed point of the morphism 0->010, 1->011, starting from a(1) = 0. 14
 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 COMMENTS A cubefree word. A generalized choral sequence c(3n+r_0)=0, c(3n+r_1)=1, c(3n+r_c)=c(n), with r_0=0, r_1=1, and r_c=2. - Joel Reyes Noche (joel.noche(AT)up.edu.ph), Jul 09 2009 From Joerg Arndt, Apr 15 2010: (Start) Turns (by 120 degrees) of the terdragon curve which can be rendered as follows: [Init] Set n=0 and direction=0. [Draw] Draw a unit line (in the current direction). Turn left/right if a(n) is zero/nonzero respectively. [Next] Set n=n+1 and goto (draw). See fxtbook link below. (End) REFERENCES J. Berstel and J. Karhumaki, Combinatorics on words - a tutorial, Bull. EATCS, #79 (2003), pp. 178-228. J. R. Noche, Generalized Choral Sequences, Matimyas Matematika, 31(2008), 25-28. [From Joel Reyes Noche (joel.noche(AT)up.edu.ph), Jul 09 2009] LINKS Joerg Arndt Matters Computational (The Fxtbook), section 1.31.4, pp. 92-95; dragon curve picture on p. 93. Jean Berstel, Home Page Dimitri Hendriks, Frits G. W. Dannenberg, Jorg Endrullis, Mark Dow and Jan Willem Klop, Arithmetic Self-Similarity of Infinite Sequences, arXiv preprint 1201.3786 [math.CO], 2012. FORMULA a(n) = (A062756(n) - A062756(n+1) + 1)/2, where A062756(n) is the number of 1's in the ternary expansion of n. From formula in A062756: g.f.: A(x) = 1/(1-x)/2 - Sum_{k>=0} x^(3^k-1)/(1+x^(3^k)+x^(2*3^k))/2. - Paul D. Hanna, Feb 24 2006 Given g.f. A(x) then B(x) = x * A(x) satisfies B(x) = x^2 / (1 - x^3) + B(x^3). - Michael Somos, Jul 29 2009 a(3*n) = 0, a(3*n + 1) = 1, a(3*n - 1) = a(n - 1). - Michael Somos, Jul 29 2009 a(n) = -1 + A060236(n). - Joerg Arndt, Jan 21 2013 EXAMPLE Start: 0 Rules: 0 --> 010 1 --> 011 ------------- 0: (#=1) 0 1: (#=3) 010 2: (#=9) 010011010 3: (#=27) 010011010010011011010011010 4: (#=81) 010011010010011011010011010010011010010011011010011011010011010010011011010011010 MAPLE a:= proc(n) option remember; local m, r; r:= irem(n, 3, 'm'); `if`(r<2, r, a(m)) end: seq(a(n), n=0..1000); MATHEMATICA Nest[Flatten[ # /. {0 -> {0, 1, 0}, 1 -> {0, 1, 1}}] &, {0}, 5] PROG (PARI) {a(n)=if(n<1, 0, polcoeff(1/(1-x)/2-sum(k=0, ceil(log(n+1)/log(3)), x^(3^k-1)/(1+x^(3^k)+x^(2*3^k)+x*O(x^n)))/2, n))} \\ Paul D. Hanna, Feb 24 2006 (PARI) {a(n) = if( n<1, 0, n++; n / 3^valuation(n, 3) % 3 -1 )} /* Michael Somos, Jul 29 2009 */ (C++) /* CAT algorithm */ bool bit_dragon3_turn(ulong &x) /* Increment the radix-3 word x and return whether the number of ones in x is decreased. */ { ulong s = 0; while ( (x & 3) == 2 ) { x >>= 2; ++s; } /* scan over nines */ bool tr = ( (x & 3) != 0 ); /* incremented word will have one less 1 */ ++x; /* increment next digit */ x <<= (s<<1); /* shift back */ return tr; } /* Joerg Arndt, Apr 15 2010 */ CROSSREFS Cf. A137893 (complement), A060236 (as 1,2), A343785 (as +-1), A189640 (essentially the same). Cf. A062756, A026179 (indices of 1's except n=1), A189672 (partial sums). Cf. A189628 (guide). Sequence in context: A245938 A176405 A084091 * A082401 A157238 A337546 Adjacent sequences: A080843 A080844 A080845 * A080847 A080848 A080849 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Mar 29 2003 EXTENSIONS More terms from Wouter Meeussen, Apr 01 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 10:02 EST 2022. Contains 358411 sequences. (Running on oeis4.)