login
A080344
Partial sums of A023969.
1
0, 0, 0, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 4, 5, 6, 6, 6, 6, 6, 6, 7, 8, 9, 10, 10, 10, 10, 10, 10, 10, 11, 12, 13, 14, 15, 15, 15, 15, 15, 15, 15, 15, 16, 17, 18, 19, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 23, 24, 25, 26, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 30, 31, 32, 33, 34, 35
OFFSET
0,8
FORMULA
From Ridouane Oudra, May 11 2019: (Start)
a(n) = (1/2)*(n + 1 - t - abs(n + 1 - t^2)), where t = floor(sqrt(n+1) + 1/2).
a(n) = (1/2)*(n + 1 - A000194(n+1) - abs(n + 1 - A000194(n+1)^2)).
a(n) = (1/2)*(A056847(n+1) - A053188(n+1)). (End)
PROG
(Magma) [1/2*(n+1-Floor(Sqrt(n+1)+1/2)-Abs(n+1-(Floor(Sqrt(n+1)+1/2))^2)):n in [0..90]]; // Marius A. Burtea, May 09 2019
(PARI) f(n) = sqrtint(4*n)-2*sqrtint(n); \\ A023969
a(n) = sum(k=0, n, f(k)); \\ Michel Marcus, May 10 2019
CROSSREFS
Cf. A023969.
Sequence in context: A196183 A200264 A104406 * A194225 A025782 A120506
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 20 2003
STATUS
approved