login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080242 Table of coefficients of polynomials P(n,x) defined by the relation P(n,x) = (1+x)*P(n-1,x) + (-x)^(n+1). 5
1, 1, 1, 1, 1, 2, 2, 1, 3, 4, 2, 1, 1, 4, 7, 6, 3, 1, 5, 11, 13, 9, 3, 1, 1, 6, 16, 24, 22, 12, 4, 1, 7, 22, 40, 46, 34, 16, 4, 1, 1, 8, 29, 62, 86, 80, 50, 20, 5, 1, 9, 37, 91, 148, 166, 130, 70, 25, 5, 1, 1, 10, 46, 128, 239, 314, 296, 200, 95 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

Values generate solutions to the recurrence a(n) = a(n-1) + k(k+1)* a(n-2), a(0)=1, a(1) = k(k+1)+1. Values and sequences associated with this table are included in A072024.

LINKS

G. C. Greubel, Rows n = 0..100 of coefficients, flattened

FORMULA

Rows are generated by P(n,x) = ((x+1)^(n+2) - (-x)^(n+2))/(2*x+1).

The polynomials P(n,-x), n > 0, satisfy a Riemann hypothesis: their zeros lie on the vertical line Re x = 1/2 in the complex plane.

O.g.f.: (1+x*t+x^2*t)/((1+x*t)(1-t-x*t)) = 1 + (1+x+x^2)*t + (1+2x+2x^2)*t^2 + ... . - Peter Bala, Oct 24 2007

T(n,k) = if(k<=2*floor((n+1)/2), Sum_{j=0..floor((n+1)/2)} binomial(n-2j,k-2j), 0). - Paul Barry, Apr 08 2011 (This formula produces the odd numbered rows correctly, but not the even. - G. C. Greubel, Feb 22 2019)

EXAMPLE

Rows are {1}, {1,1,1}, {1,2,2}, {1,3,4,2,1}, {1,4,7,6,3}, ... This is the same as table A035317 with an extra 1 at the end of every second row.

Triangle begins

  1;

  1,  1,  1;

  1,  2,  2;

  1,  3,  4,  2,  1;

  1,  4,  7,  6,  3;

  1,  5, 11, 13,  9,  3,  1;

  1,  6, 16, 24, 22, 12,  4;

  1,  7, 22, 40, 46, 34, 16,  4,  1;

  1,  8, 29, 62, 86, 80, 50, 20,  5;

MATHEMATICA

Table[CoefficientList[Series[((1+x)^(n+2) -(-1)^n*x^(n+2))/(1+2*x), {x, 0, n+2}], x], {n, 0, 10}]//Flatten (* G. C. Greubel, Feb 18 2019 *)

CROSSREFS

Similar to the triangles A059259, A035317, A108561, A112555. Cf. A059260.

Cf. A001045 (row sums).

Sequence in context: A076019 A071453 A212306 * A183927 A035317 A103923

Adjacent sequences:  A080239 A080240 A080241 * A080243 A080244 A080245

KEYWORD

easy,nonn,tabf

AUTHOR

Paul Barry, Feb 12 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 17:03 EST 2019. Contains 330000 sequences. (Running on oeis4.)