|
|
A080241
|
|
Define two sequences by A_n = mex{A_i,B_i : 0 <= i < n} for n >= 0, B_0=0, B_1=1 and for n >= 2, B_n = 2B_{n-1}+(-1)^{A_n}. Sequence gives B_n.
|
|
1
|
|
|
0, 1, 3, 7, 13, 27, 55, 109, 219, 437, 875, 1751, 3501, 7003, 14005, 28011, 56021, 112043, 224085, 448171, 896341, 1792683, 3585365, 7170731, 14341463, 28682925, 57365851, 114731701, 229463403, 458926805, 917853611, 1835707221
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
The minimal excluded value of set of nonnegative numbers S is mex S = least nonnegative integer not in S.
The sequence A_n is given in A080240.
|
|
LINKS
|
Table of n, a(n) for n=0..31.
A. S. Fraenkel, Home Page
A. S. Fraenkel, New games related to old and new sequences, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 4, Paper G6, 2004.
|
|
CROSSREFS
|
Cf. A080240.
Sequence in context: A140465 A333653 A301594 * A098479 A119445 A146904
Adjacent sequences: A080238 A080239 A080240 * A080242 A080243 A080244
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Aviezri S. Fraenkel, Mar 12 2003
|
|
EXTENSIONS
|
More terms from John W. Layman, May 04 2004
|
|
STATUS
|
approved
|
|
|
|