

A079973


Number of permutations satisfying k <= p(i)  i <= r and p(i)  i not in I, i=1..n, with k=1, r=4, I={0,3}.


4



1, 0, 1, 1, 1, 3, 2, 5, 6, 8, 14, 16, 27, 36, 51, 77, 103, 155, 216, 309, 448, 628, 912, 1292, 1849, 2652, 3769, 5413, 7713, 11031, 15778, 22513, 32222, 46004, 65766, 94004, 134283, 191992, 274291, 392041, 560287, 800615, 1144320, 1635193, 2336976
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,6


COMMENTS

Number of compositions (ordered partitions) of n into elements of the set {2,3,5}.
For n>=2, a(n) is number of compositions of n2 with elements from the set {1,2,3} such that no two odd numbers appear consecutively.  Armend Shabani, Mar 01 2017


REFERENCES

D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755770. NorthHolland, Amsterdam, 1970.


LINKS

Table of n, a(n) for n=0..44.
Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (2010), 119135
Index entries for linear recurrences with constant coefficients, signature (0,1,1,0,1).


FORMULA

a(n) = a(n2) + a(n3) + a(n5).
G.f.: 1/(x^5 + x^3 + x^2  1).


MATHEMATICA

CoefficientList[Series[1/(x^5 + x^3 + x^2  1), {x, 0, 44}], x] (* Michael De Vlieger, Mar 02 2017 *)


CROSSREFS

Row sums of A059484.  N. J. A. Sloane, Jun 02 2009
Cf. A002524A002529, A072827, A072850A072856, A079955A080014.
Sequence in context: A277820 A277680 A303764 * A267150 A055922 A194072
Adjacent sequences: A079970 A079971 A079972 * A079974 A079975 A079976


KEYWORD

nonn


AUTHOR

Vladimir Baltic, Feb 17 2003


STATUS

approved



