login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079955 Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=1, r=5, I={0,2,3}. 77
1, 0, 1, 0, 1, 1, 2, 2, 3, 3, 5, 6, 9, 11, 15, 19, 26, 34, 46, 60, 80, 105, 140, 185, 246, 325, 431, 570, 756, 1001, 1327, 1757, 2328, 3083, 4085, 5411, 7169, 9496, 12580, 16664, 22076, 29244, 38741, 51320, 67985, 90060, 119305, 158045, 209366, 277350, 367411 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

Number of compositions (ordered partitions) of n into elements of the set {2,5,6}.

REFERENCES

D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (2010), 119-135

Index entries for linear recurrences with constant coefficients, signature (0,1,0,0,1,1).

FORMULA

a(n) = a(n-2) + a(n-5) + a(n-6).

G.f.: 1/(1 - x^2 - x^5 - x^6).

MAPLE

seq(coeff(series(1/(1-x^2-x^5-x^6), x, n+1), x, n), n = 0..50); # G. C. Greubel, Dec 11 2019

MATHEMATICA

LinearRecurrence[{0, 1, 0, 0, 1, 1}, {1, 0, 1, 0, 1, 1}, 51] (* Jean-François Alcover, Dec 11 2019 *)

PROG

(PARI) a(n) = ([0, 1, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0; 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 1; 1, 1, 0, 0, 1, 0]^n*[1; 0; 1; 0; 1; 1])[1, 1] \\ Charles R Greathouse IV, Jul 28 2015

(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1-x^2-x^5-x^6) )); // G. C. Greubel, Dec 11 2019

(Sage)

def A079955_list(prec):

P.<x> = PowerSeriesRing(ZZ, prec)

return P( 1/(1-x^2-x^5-x^6) ).list()

A079955_list(50) # G. C. Greubel, Dec 11 2019

CROSSREFS

Cf. A002524, A002525, A002526, A002527, A002528, A002529, A072827.

Cf. A072850, A072851, A072852, A072853, A072854, A072855, A072856.

Cf. A079955 - A080014.

Sequence in context: A274158 A020999 A309712 * A192928 A136417 A322787

Adjacent sequences: A079952 A079953 A079954 * A079956 A079957 A079958

KEYWORD

nonn,easy

AUTHOR

Vladimir Baltic, Feb 19 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 23:05 EST 2022. Contains 358710 sequences. (Running on oeis4.)