The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A079675 a(1)=1; a(n)=sum(u=1,n-1,sum(v=1,u,sum(w=1,v,sum(x=1, w,sum(y=1,x,a(y)))))). 2
 1, 1, 6, 26, 106, 431, 1757, 7168, 29244, 119305, 486716, 1985603, 8100456, 33046585, 134816705, 549997641, 2243767969, 9153665985, 37343255690, 152345382480, 621507555626, 2535499503900, 10343812679475, 42198572937400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Row sums of Riordan array (1,1/(1-x)^5). A quintisection of A003520. - Paul Barry, Feb 02 2006 LINKS Michael De Vlieger, Table of n, a(n) for n = 1..1639 D. Birmajer, J. B. Gil, M. D. Weiner, n the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3 , example 16. Milan JanjiÄ‡, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2. Index entries for linear recurrences with constant coefficients, signature (6,-10,10,-5,1). FORMULA a(1)=1, a(2)=1, a(3)=6, a(4)=26, a(5)=106, a(6)=431; for n>=7, a(n)=5*u(n-1)-4*u(n-2)+u(n-3)+b(n) where b(n) is the 6 periodic sequence (0, 1, 1, 0, -1, -1) G.f.: (1-x)^5/((1-x)^5-x); a(n)=sum{k=0..n, binomial(5n-4k-1,k)}; - Paul Barry, Feb 02 2006 MATHEMATICA LinearRecurrence[{6, -10, 10, -5, 1}, {1, 1, 6, 26, 106, 431}, 40] (* Harvey P. Dale, Aug 21 2017 *) CROSSREFS Cf. A055991, A052529, A001906. Sequence in context: A037545 A027996 A020989 * A113991 A267578 A255467 Adjacent sequences:  A079672 A079673 A079674 * A079676 A079677 A079678 KEYWORD nonn,easy AUTHOR Benoit Cloitre, Jan 26 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 10:28 EDT 2020. Contains 336198 sequences. (Running on oeis4.)