login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055991 a(n) is its own 4th difference. 8
1, 5, 19, 69, 250, 907, 3292, 11949, 43371, 157422, 571388, 2073943, 7527704, 27322992, 99173120, 359964521, 1306548149, 4742323107, 17213011605, 62477347458, 226771411939, 823102698260, 2987581397893, 10843899100203 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) is the number of distinct matrix products in (A+B+C+D+E)^n where A,B,C and D all commute with each other, but not with E. - Paul D. Hanna and Max Alekseyev, Feb 01 2006

Row sums of Riordan array (1,1/(1-x)^4). - Paul Barry, Feb 02 2006

Quadrisection of A003269: a(n)=A003269(4n-1). - Paul Barry, Feb 02 2006

From Gary W. Adamson, Apr 23 2009: (Start)

Equals the INVERT transform of the tetrahedral series.

a(4) = 69 = (1, 4, 10) dot (19, 5, 1) + 20; = (19 + 20 + 10) + 20. (End)

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.

Index entries for linear recurrences with constant coefficients, signature (5,-6,4,-1).

FORMULA

a(n) = 5*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) = a(n-1)+A055990(n) = A055988(n+1)-A055988(n) = A055989(n+1)-2*A055989(n)+A055989(n-1).

Letting a(0)=1, we have a(n)=sum(u=0, n-1, sum(v=0, u, sum(w=0, v, sum(x=0, w, a(x))))) for n>0. - Benoit Cloitre, Jan 26 2003

a(n) = sum_{k=1..n} binomial(n+3*k-1, n-k). - Vladeta Jovovic, Mar 23 2003

a(n) = sum{k=0..n, binomial(4n-3k-1,k)}. - Paul Barry, Feb 02 2006

G.f.: x/(1-5x+6x^2-4x^3+x^4). - Paul Barry, Feb 02 2006

MATHEMATICA

LinearRecurrence[{5, -6, 4, -1}, {1, 5, 19, 69}, 30] (* Harvey P. Dale, Feb 27 2013 *)

PROG

(MAGMA) I:=[1, 5, 19, 69]; [n le 4 select I[n] else 5*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Apr 05 2012

CROSSREFS

Cf. A055988, A055989, A055990 for the other differences of a(n). See A000079, A001906, A052529 for examples of sequences which are respectively their own first, second and third differences.

Sequence in context: A047145 A240525 A264200 * A030662 A149758 A026590

Adjacent sequences:  A055988 A055989 A055990 * A055992 A055993 A055994

KEYWORD

nonn,easy

AUTHOR

Henry Bottomley, Jun 02 2000

EXTENSIONS

More terms from James A. Sellers, Jun 05 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 07:55 EST 2018. Contains 317279 sequences. (Running on oeis4.)