OFFSET
1,2
COMMENTS
Concrete Mathematics Casino Problem - Winners.
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. 2nd Edition. Addison-Wesley, Reading, MA, 1994. Section 3.2, pp. 74-76.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
B. Cloitre, Some divisibility sequences.
FORMULA
For n = (k/2)*(3*k+11) - m for some fixed m >= 0 with n > ((k-1)/2)*(3*(k-1) + 11) we have a(n) = k^3 + 3*k^2 + (3-m)*k. - Benoit Cloitre, Jan 22 2012
EXAMPLE
252^(1/3) = 6.316359597656... and 252/6 = 42 hence 252 is in the sequence.
MAPLE
t1:=[]; for n from 1 to 500 do t2:=floor(n^(1/3)); if n mod t2 = 0 then t1:=[op(t1), n]; fi; od: t1; # N. J. A. Sloane, Oct 29 2006
MATHEMATICA
Select[Range[1000], Mod[#, Floor[Power[#, 1/3]]] == 0 &]
Select[Range[1000], Divisible[#, Floor[CubeRoot[#]]]&] (* Harvey P. Dale, Jun 19 2023 *)
PROG
(Magma) [n: n in [1..250] | n mod Floor(n^(1/3)) eq 0 ]; // G. C. Greubel, Jul 20 2023
(SageMath) [n for n in (1..250) if n%(floor(n^(1/3)))==0 ] # G. C. Greubel, Jul 20 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jan 31 2003
STATUS
approved