login
A079046
Coefficients of the polynomials in the numerator of the generating function f(x)=(x-x^2)/(x^3-2x^2-2x+1) for F(n)^2, (where F(n) is the Fibonacci sequence) and its successive derivatives starting with the highest power of x.
1
-1, 1, 0, 1, -2, 4, -2, 1, -2, 6, -24, 34, -24, 12, 2, 6, -24, 144, -336, 450, -384, 156, 24, 24, -24, 120, -960, 3120, -6360, 8592, -7080, 2640, -480, 840, 216, 120, -720, 7200, -30000, 82800, -156960, 198360, -154800, 72000, -37200, 16920, 10080, 3000
OFFSET
0,5
FORMULA
(d^(n)/d(x^n))f(x), where f(x)=(x-x^2)/(x^3-2x^2-2x+1), for n=0, 1, 2, 3, . ...
EXAMPLE
The coefficients of the first 2 polynomials in the numerator of the generating function f(x)=(x-x^2)/(x^3-2x^2-2x+1) for F(n)^2, (where F(n) is the Fibonacci sequence) and its successive derivatives starting with the highest power of x: -1,1,0; 1,-2,4,-2,1; . ...
CROSSREFS
Cf. A079045.
Sequence in context: A087266 A160801 A177002 * A356474 A079045 A021417
KEYWORD
sign,tabf
AUTHOR
Mohammad K. Azarian, Feb 01 2003
STATUS
approved