OFFSET
1,1
COMMENTS
Equivalently, p, p+6, p+8, p+14 and p+18 are consecutive primes.
Subsequence of A078854. - R. J. Mathar, May 06 2017
EXAMPLE
53 is in the sequence since 53, 59, 61, 67 and 71 are consecutive primes.
MATHEMATICA
l = {}; For[n = 1, n < 10^5, n++, If[Prime[n] + 6 == Prime[n + 1] \[And] Prime[n] + 8 == Prime[n + 2] \[And] Prime[n] + 14 == Prime[n + 3] \[And] Prime[n] + 18 == Prime[n + 4], AppendTo[l, Prime[n]]]]; l (* Jake Foster, Oct 27 2008 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Dec 19 2002
EXTENSIONS
Edited by Dean Hickerson, Dec 20 2002
STATUS
approved