This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078798 Sum of Manhattan distances over all self-avoiding n-step walks on square lattice. Numerator of mean Manhattan displacement s(n)=a(n)/A046661(n). 1
 6, 23, 80, 263, 834, 2569, 7764, 23095, 67910, 197607, 570560, 1635331, 4661026, 13212739, 37296004, 104836893, 293710714, 820132581, 2283926980, 6343214871, 17578257134, 48604029143, 134141458280, 369519394643 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS A conjectured asymptotic behavior for the mean Manhattan displacement lim n-> infinity a(n)/(A046661(n)*n^(3/4))=constant is illustrated in "Asymptotic Behavior of Mean Manhattan Displacement" at first link REFERENCES See under A001411 LINKS Hugo Pfoertner, Results for the 2D Self-Trapping Random Walk FORMULA a(n)= sum k=1, A046661(n) (|i_k| + |j_k|) where (i_k, j_k) are the end points of all different self-avoiding n-step walks. EXAMPLE a(3)=23 because 2 of the A046661(3)=9 walks end at Manhattan distance 1: (0,-1),(0,1) and 7 walks end at Manhattan distance 3: (1,-2),(1,2),2*(2,-1),2*(2,1),(3,0); a(3)=2*1+7*3=23 See also "Distribution of end point distance" at first link PROG Source code of "FORTRAN program for distance counting" available at first link CROSSREFS Cf. A001411, A046661, A078797. Sequence in context: A220148 A114245 A220238 * A027043 A006815 A264690 Adjacent sequences:  A078795 A078796 A078797 * A078799 A078800 A078801 KEYWORD frac,nonn AUTHOR Hugo Pfoertner, Dec 10 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 13 20:57 EST 2019. Contains 329106 sequences. (Running on oeis4.)