login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078521 Signed triangle of D'Arcais numbers (A008298) : coefficients of r in the polynomials generated by the series coefficients of z^n in Product[(1-z^k)^r, {k,1,Inf}]*(n!). 0
1, 0, -1, 0, -3, 1, 0, -8, 9, -1, 0, -42, 59, -18, 1, 0, -144, 450, -215, 30, -1, 0, -1440, 3394, -2475, 565, -45, 1, 0, -5760, 30912, -28294, 9345, -1225, 63, -1, 0, -75600, 293292, -340116, 147889, -27720, 2338, -84, 1, 0, -524160, 3032208, -4335596, 2341332, -579369, 69552, -4074, 108, -1, 0, -6531840 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Also the Bell transform of -A038048(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016

LINKS

Table of n, a(n) for n=1..57.

FORMULA

See Mathematica line.

Row sums give A010815 * n!.

EXAMPLE

The z-expansion of Product[(1-z^k)^r, {k,1,3}] is 1 - r*z + ((-3+r)*r*z^2)/2 -(r*(8-9*r +r^2)*z^3)/6, so the third row of the triangle is 0,-8,9,-1.

Triangle begins

1,

0, -1,

0, -3, 1,

0, -8, 9, -1,

0, -42, 59, -18, 1,

0, -144, 450, -215, 30, -1,

0, -1440, 3394, -2475, 565, -45, 1,

0, -5760, 30912, -28294, 9345, -1225, 63, -1,

0, -75600, 293292, -340116, 147889, -27720, 2338, -84, 1

...

MAPLE

# The function BellMatrix is defined in A264428.

BellMatrix(n -> -n!*numtheory:-sigma(n+1), 9); # Peter Luschny, Jan 26 2016

MATHEMATICA

w=16; (CoefficientList[ #, r]&/@ CoefficientList[Series[Product[(1-z^k)^r, {k, 1, w}], {z, 0, w}], z])Range[0, w]!

CROSSREFS

Cf. A008298, A010815, A038048.

Sequence in context: A270388 A052420 A162971 * A194938 A135871 A126178

Adjacent sequences:  A078518 A078519 A078520 * A078522 A078523 A078524

KEYWORD

easy,sign,tabl

AUTHOR

Wouter Meeussen, Jan 07 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 06:30 EST 2016. Contains 278749 sequences.