login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078521 Signed triangle of D'Arcais numbers (A008298) : coefficients of r in the polynomials generated by the series coefficients of z^n in Product[(1-z^k)^r, {k,1,Inf}]*(n!). 0
1, 0, -1, 0, -3, 1, 0, -8, 9, -1, 0, -42, 59, -18, 1, 0, -144, 450, -215, 30, -1, 0, -1440, 3394, -2475, 565, -45, 1, 0, -5760, 30912, -28294, 9345, -1225, 63, -1, 0, -75600, 293292, -340116, 147889, -27720, 2338, -84, 1, 0, -524160, 3032208, -4335596, 2341332, -579369, 69552, -4074, 108, -1, 0, -6531840 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Also the Bell transform of -A038048(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016

LINKS

Table of n, a(n) for n=1..57.

FORMULA

See Mathematica line.

Row sums give A010815 * n!.

EXAMPLE

The z-expansion of Product[(1-z^k)^r, {k,1,3}] is 1 - r*z + ((-3+r)*r*z^2)/2 -(r*(8-9*r +r^2)*z^3)/6, so the third row of the triangle is 0,-8,9,-1.

Triangle begins

1,

0, -1,

0, -3, 1,

0, -8, 9, -1,

0, -42, 59, -18, 1,

0, -144, 450, -215, 30, -1,

0, -1440, 3394, -2475, 565, -45, 1,

0, -5760, 30912, -28294, 9345, -1225, 63, -1,

0, -75600, 293292, -340116, 147889, -27720, 2338, -84, 1

...

MAPLE

# The function BellMatrix is defined in A264428.

BellMatrix(n -> -n!*numtheory:-sigma(n+1), 9); # Peter Luschny, Jan 26 2016

MATHEMATICA

w=16; (CoefficientList[ #, r]&/@ CoefficientList[Series[Product[(1-z^k)^r, {k, 1, w}], {z, 0, w}], z])Range[0, w]!

CROSSREFS

Cf. A008298, A010815, A038048.

Sequence in context: A270388 A052420 A162971 * A194938 A135871 A126178

Adjacent sequences:  A078518 A078519 A078520 * A078522 A078523 A078524

KEYWORD

easy,sign,tabl

AUTHOR

Wouter Meeussen, Jan 07 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 30 14:53 EDT 2016. Contains 272225 sequences.