The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078522 Numbers n such that (n+1)*(2*n+1) is a perfect square. 11
 0, 24, 840, 28560, 970224, 32959080, 1119638520, 38034750624, 1292061882720, 43892069261880, 1491038293021224, 50651409893459760, 1720656898084610640, 58451683124983302024, 1985636569351347658200, 67453191674820837076800, 2291422880374557112953024 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Equivalently, both n+1 and 2*n+1 are perfect squares. The square roots of (n+1)*(2*n+1) are in A046176. Also numbers n such that 3*A000217(n) + A000217(n+1) is a perfect square. - Bruno Berselli, Nov 17 2016 From Sergey Pavlov, Mar 14 2017: (Start) The sequence of areas k(n)*q(n)/2, of the ordered Pythagorean triples (k(n), q(n) = k(n) + 2, c(n)) with k(1)=0, q(1)=2, c(1)=0, a(1)=0, and k(2)=6, q(2)=8, c(2)=10, a(2)=24 (conjectured). Conjecture: let f(n) be a sequence of form x(n)*y(n)/2, of the ordered Pythagorean triples (x(n), y(n) = x(n) + v, z(n)) with x(1)=0, y(1)=v, z(1)=0, f(1)=0, where v is an even number. Then there exists such subset p(i) that p(1) = 0, p(2) = 24*(v/2)^2, for any i > 2, p(i) = 34*p(i-1) - p(i-2) + 24*(v/2)^2, and any p(i) is a term of the above sequence f(n) (see also the first formula by Benoit Cloitre in the Formula section). (End) LINKS Colin Barker, Table of n, a(n) for n = 1..650 Index entries for linear recurrences with constant coefficients, signature (35,-35,1). FORMULA From Benoit Cloitre, Jan 19 2003: (Start) a(1)=0, a(2)=24; for n > 2, a(n) = 34*a(n-1) - a(n-2) + 24. a(n) = floor(A*B^n), where A = (3 + 2*sqrt(2))/8 and B = 17 + 12*sqrt(2). a(n) = A008844(n) - 1. (End) From R. J. Mathar, Sep 21 2011: (Start) G.f.: 24*x^2/( (1-x)*(1-34*x+x^2) ). a(n) = 24*A029546(n-2). (End) a(n) = (A001653(n)^2 - 1)/2 = A002315(n-1)^2 - 1. - Tomohiro Yamada, Sep 15 2019 a(n) = (3/4)*(ChebyshevT(n, 17) - 16*Chebyshev(n-1, 17) - 1). - G. C. Greubel, Jan 13 2020 MAPLE seq(coeff(series(24*x^2/((1-x)*(1-34*x+x^2)), x, n+1), x, n), n = 1..20); # G. C. Greubel, Jan 13 2020 MATHEMATICA RecurrenceTable[{a[1]==0, a[2]==24, a[n]==34a[n-1] -a[n-2] +24}, a[n], {n, 20}] Drop[CoefficientList[Series[24*x^2/((1-x)*(1-34*x+x^2)), {x, 0, 20}], x], 1] (* Indranil Ghosh, Mar 15 2017 *) Table[3*(ChebyshevT[n, 17] -16*ChebyshevU[n-1, 17] -1)/4, {n, 20}] (* G. C. Greubel, Jan 13 2020 *) PROG (PARI) concat(0, Vec(24*x^2/((1-x)*(1-34*x+x^2)) + O(x^20))) \\ Colin Barker, Nov 21 2016 (MAGMA) I:=[0, 24]; [n le 2 select I[n] else 34*Self(n-1) - Self(n-2) + 24: n in [1..20]]; // Marius A. Burtea, Sep 15 2019 (Sage) def A078522_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P( 24*x^2/((1-x)*(1-34*x+x^2)) ).list() a=A078522_list(20); a[1:] # G. C. Greubel, Jan 13 2020 (GAP) a:=[0, 24];; for n in [3..20] do a[n]:=34*a[n-1]-a[n-2]+24; od; a; # G. C. Greubel, Jan 13 2020 CROSSREFS Cf. A000217, A008844, A009111, A029546, A029549, A046176. Cf. A278310: numbers m such that T(m) + 3*T(m+1) is a square. Sequence in context: A158651 A265884 A204559 * A268632 A208792 A195130 Adjacent sequences:  A078519 A078520 A078521 * A078523 A078524 A078525 KEYWORD nonn,easy AUTHOR Joseph L. Pe, Jan 07 2003 EXTENSIONS Edited by Bruno Berselli, Nov 17 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 15 07:59 EDT 2021. Contains 342975 sequences. (Running on oeis4.)