OFFSET
1,4
COMMENTS
Let zetaI(s) be the zeta function of icosian ring: zetaI(s) = zetaQ(tau)(2s)*zetaQ(tau)(2s-1) where zetaQ(tau)(s) is defined in A035187. Then zetaI(s) = Sum_{n>=1} a(n)/n^(2s).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
M. Baake and R. V. Moody, Similarity submodules and root systems in four dimensions, Canad. J. Math. 51 (1999), 1258-1276; arXiv preprint, arXiv:math/9904028 [math.MG], 1999.
FORMULA
Multiplicative with a(p^e) = (5^(e + 1) - 1)/4 if p = 5, (p^(e + 2) - 1)/(p^2 - 1) or 0 if p == 2 or 3 (mod 5) and e is even or odd, respectively, and Sum_{k=0..e} (k + 1)*(e - k + 1)*p^k if p == 1 or 4 (mod 5). - Amiram Eldar, May 13 2022
MATHEMATICA
f[p_, e_] := Which[p == 5, (5^(e + 1) - 1)/4, (m = Mod[p, 5]) == 2 || m == 3, If[EvenQ[e], (p^(e + 2) - 1)/(p^2 - 1), 0], m == 1 || m == 4, Sum[(k + 1)*(e - k + 1)*p^k, {k, 0, e}]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 13 2022 *)
PROG
(PARI) {a(n)=local(A); if(n<1, 0, A=direuler(p=2, n, 1/(1-X)/(1-kronecker(5, p)*X)); sumdiv(n, d, A[d]*d*A[n/d]))} /* Michael Somos, Jun 06 2005 */
(PARI) pf(p, r) = {if (p==5, (5^(r+1) -1)/4, if (((p % 5) == 2) || ((p % 5) == 3), if (!(r % 2), (p^(r+2) - 1)/(p^2-1), 0), if (((p % 5) == 1) || ((p % 5) == 4), sum(k=0, r, (k+1)*(r-k+1)*p^k))); ); }
a(n) = {my(f = factor(n)); prod(i=1, #f~, pf(f[i, 1], f[i, 2])); } \\ Michel Marcus, Mar 03 2014
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Benoit Cloitre, Dec 31 2002
STATUS
approved