This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078475 Determinant of rank n matrix of 1..n^2 filled successively back and forth along antidiagonals. 6
 1, -2, 15, -594, -5187, 23244, 122475, -279292, -1157143, 1850930, 6642839, -8529278, -27810555, 30741424, 93575187, -92784984, -268191855, 244875462, 679807583, -581798410 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The matrix is formed by writing numbers 1 .. n^2 in zig-zag pattern as shown in examples below. Every other antidiagonal reads backwards from A069480. Whereas each antidiagonal of A069480 begins with one more than a triangular number and ends with the next triangular number, here every other antidiagonal begins with one more than a triangular number and the next antidiagonal begins with a triangular number. The trace of the matrix is the sequence A006003 (proved). - Stefano Spezia, Aug 07 2018 The matrix is defined by A[i,j] = (2 - i - j)*((i + j - 1) mod 2)+(j^2 + (2*i - 1)*j + i^2 - i)/2 + (j - 1)*(1 - 2*((i + j) mod 2)) if i + j <= n + 1 and A[i,j] = n^2 - ((4*n^2 + (- 4*j - 4*i + 6)*n + j^2 + (2*i - 3)*j + i^2 - 3*i + 2)/2 + (i + j - 2*n)*((2*n - i - j + 1) mod 2)) + 1 - (n - j)*(1 - 2*((i + j) mod 2)) if i + j > n + 1 (proved). - Stefano Spezia, Aug 11 2018 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 1..1450 FORMULA From Vaclav Kotesovec, Jan 08 2019: (Start) Recurrence: (5*n^16 - 176*n^15 + 2888*n^14 - 29332*n^13 + 206454*n^12 - 1068276*n^11 + 4205934*n^10 - 12861022*n^9 + 30891328*n^8 - 58524140*n^7 + 87229074*n^6 - 101275380*n^5 + 89823673*n^4 - 58824210*n^3 + 26795412*n^2 - 7559784*n + 985608)*a(n) = 8*(n^14 - 20*n^13 + 169*n^12 - 754*n^11 + 1630*n^10 + 564*n^9 - 15184*n^8 + 52244*n^7 - 109015*n^6 + 167071*n^5 - 202816*n^4 + 191592*n^3 - 125145*n^2 + 45333*n - 5832)*a(n-1) - (5*n^16 - 96*n^15 + 848*n^14 - 4580*n^13 + 16966*n^12 - 45892*n^11 + 94310*n^10 - 151266*n^9 + 192520*n^8 - 195196*n^7 + 155666*n^6 - 94052*n^5 + 39329*n^4 - 6798*n^3 - 4572*n^2 + 5400*n - 1944)*a(n-2). a(n) ~ ((-1)^n - 3) * (cos(Pi*n/2) + sin(Pi*n/2)) * n^8 / 72. (End) EXAMPLE n=2, det=-2: {1 2 / 3 4 } n=3, det=15: {1 2 6 / 3 5 7 / 4 8 9 } n=4, det=-594: { 1 2 6 7 / 3 5 8 13 / 4 9 12 14 / 10 11 15 16 } n=5, det=-5187: { 1 2 6 7 15 / 3 5 8 14 16 / 4 9 13 17 22 / 10 12 18 21 23 / 11 19 20 24 25 } MATHEMATICA a[i_, j_, n_] := If[i+j<=n+1, (2-i-j)*Mod[i+j-1, 2]+(j^2+(2*i-1)*j+i^2-i)/2+(j-1)*(1-2*Mod[i+j, 2]), n^2-((4*n^2+(-4*j-4*i+6)*n+j^2+(2*i-3)*j+i^2-3*i+2)/2+(i+j-2*n)*Mod[2*n-i-j+1, 2])+1-(n-j)*(1-2*Mod[i+j, 2])]; f[n_] := Det[ Table[a[i, j, n], {i, n}, {j, n}]]; Array[f, nmax] (* Stefano Spezia, Aug 11 2018 *) PROG (PARI) A(i, j, n) = if (i + j <= n + 1, (2 - i - j)*((i + j - 1) % 2)+(j^2 + (2*i - 1)*j + i^2 - i)/2 + (j - 1)*(1 - 2*((i + j) % 2)), n^2 - ((4*n^2 + (- 4*j - 4*i + 6)*n + j^2 + (2*i - 3)*j + i^2 - 3*i + 2)/2 + (i + j - 2*n)*((2*n - i - j + 1) % 2)) + 1 - (n - j)*(1 - 2*((i + j) % 2))); a(n) = matdet(matrix(n, n, i, j, A(i, j, n))); \\ Michel Marcus, Aug 11 2018 (MATLAB and FreeMat) for(n=1:nmax)    A=zeros(n, n);    for(i=1:n)       for(j=1:n)          if(i+j<=n+1)             A(i, j)=(2-i-j)*mod(i+j-1, 2)+(j^2+(2*i-1)*j+i^2-i)/2+(j-1)*(1-2*mod(i+j, 2));          else             A(i, j)=n^2-((4*n^2+(-4*j-4*i+6)*n+j^2+(2*i-3)*j+i^2-3*i+2)/2+(i+j-2*n)*mod(2*n-i-j+1, 2))+1-(n-j)*(1-2*mod(i+j, 2));          end       end    end    fprintf('%d\t%0.f\n', n, det(A)); end # Stefano Spezia, Aug 12 2018 (GAP) A078475 := function(k) local i, j, n; for n in [1 .. k] do    A:=NullMat(n, n);    for i in [1 .. n] do       for j in [1 .. n] do          if i+j<=n+1 then             A[i][j] := (2-i-j)*RemInt(i+j-1, 2)+(j^2+(2*i-1)*j+i^2-i)/2+(j-1)*(1-2*RemInt(i+j, 2));;          else             A[i][j] := n^2-((4*n^2+(-4*j-4*i+6)*n+j^2+(2*i-3)*j+i^2-3*i+2)/2+(i+j-2*n)*RemInt(2*n-i-j+1, 2))+1-(n-j)*(1-2*RemInt(i+j, 2));          fi;       od;    od;    Print(n, "\t", Determinant(A), "\n"); od; end; A078475(nmax); # Stefano Spezia, Aug 12 2018 CROSSREFS Cf. A079340, A069480, A023999. Sequence in context: A158109 A177394 A136463 * A015185 A203467 A071627 Adjacent sequences:  A078472 A078473 A078474 * A078476 A078477 A078478 KEYWORD sign AUTHOR Kit Vongmahadlek (kit119(AT)yahoo.com), Jan 03 2003 EXTENSIONS Edited and extended by Robert G. Wilson v, May 08 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 17 17:12 EST 2019. Contains 320222 sequences. (Running on oeis4.)