login
A078346
a(1) = 1; a(n) = Sum_{k=1..n-1} a(floor((n-1)/k)).
6
1, 1, 2, 4, 7, 11, 17, 24, 34, 46, 62, 79, 104, 130, 163, 201, 249, 298, 363, 429, 513, 605, 714, 824, 966, 1112, 1284, 1468, 1687, 1907, 2181, 2456, 2779, 3120, 3510, 3910, 4394, 4879, 5430, 6008, 6677, 7347, 8139, 8932, 9836, 10788, 11850, 12913
OFFSET
1,3
FORMULA
For k>1, a(prime(k)+1)=2*a(prime(k))-a(prime(k)-1)+1. - Benoit Cloitre, Aug 29 2004
G.f. A(x) satisfies: A(x) = x + (x/(1 - x)) * Sum_{k>=1} (1 - x^k) * A(x^k). - Ilya Gutkovskiy, Aug 11 202
CROSSREFS
Partial sums of A320224.
Sequence in context: A177116 A011911 A175822 * A301760 A122051 A073471
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Nov 22 2002
STATUS
approved