This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078343 a(0) = -1, a(1) = 2; a(n) = 2*a(n-1) + a(n-2). 18
 -1, 2, 3, 8, 19, 46, 111, 268, 647, 1562, 3771, 9104, 21979, 53062, 128103, 309268, 746639, 1802546, 4351731, 10506008, 25363747, 61233502, 147830751, 356895004, 861620759, 2080136522, 5021893803, 12123924128, 29269742059, 70663408246, 170596558551 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Inverse binomial transform of -1, 1, 6, 22, 76, 260,.. (see A111566). Binomial transform of -1, 3, -2, 6, -4, 12, -8, 24, -16,... (see A162255). - R. J. Mathar, Oct 02 2012 REFERENCES H. S. M. Coxeter, 1998, Numerical distances among the circles in a loxodromic sequence, Nieuw Arch. Wisk, 16, pp. 1-9. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..1000 H. S. M. Coxeter, Numerical distances among the spheres in a loxodromic sequence, Math. Intell. 19(4) 1997 pp. 41-47. See page 41. See pp. 46-47. Tanya Khovanova, Recursive Sequences José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv:1212.1368 [cs.DM], 2012 Index entries for linear recurrences with constant coefficients, signature (2,1). FORMULA For the unsigned version: a(1)=1; a(2)=2; a(n) = Sum_{k=2..n-1} (a(k) + a(k-1)). a(n) is asymptotic to (1/4)*(8-5*sqrt(2))*(1+sqrt(2))^n. a(n) = A048746(n-3) + 2, for n>2. - Ralf Stephan, Oct 17 2003 a(n) = 2*A000129(n) - A000129(n-1) if n>0; abs(a(n)) = sum_{k=0..floor(n/2)} (C(n-k-1, k) - C(n-k-1, k-1))2^(n-2k). - Paul Barry, Dec 23 2004 O.g.f.: (1-4*x)/(-1 + 2*x + x^2). - R. J. Mathar, Feb 15 2008 a(n) = 4*Pell(n) - Pell(n+1), where Pell = A000129. - Vladimir Reshetnikov, Sep 27 2016 MAPLE f:=proc(n) option remember; if n=0 then RETURN(-1); fi; if n=1 then RETURN(2); fi; 2*f(n-1)+f(n-2); end; MATHEMATICA a=2; b=3; lst={-1, a, b}; Do[c=(a+b)+b; AppendTo[lst, c]; a=b; b=c, {n, 3*4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 13 2009 *) Table[4 Fibonacci[n, 2] - Fibonacci[n + 1, 2], {n, 0, 30}] (* Vladimir Reshetnikov, Sep 27 2016 *) LinearRecurrence[{2, 1}, {-1, 2}, 40] (* Harvey P. Dale, Apr 15 2019 *) PROG (Haskell) a078343 n = a078343_list !! n a078343_list = -1 : 2 : zipWith (+)                         (map (* 2) \$ tail a078343_list) a078343_list -- Reinhard Zumkeller, Jan 04 2013 (PARI) a(n)=([0, 1; 1, 2]^n*[-1; 2])[1, 1] \\ Charles R Greathouse IV, Jun 11 2015 (MAGMA) m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-4*x)/(-1+2*x+x^2))); // G. C. Greubel, Jul 26 2018 CROSSREFS Cf. A000129, A221172, A221173, A221174, A221175. Sequence in context: A166302 A100342 A041281 * A148038 A326301 A148039 Adjacent sequences:  A078340 A078341 A078342 * A078344 A078345 A078346 KEYWORD sign,easy AUTHOR Benoit Cloitre, Nov 22 2002 EXTENSIONS Entry revised by N. J. A. Sloane, Apr 29 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 14:52 EDT 2019. Contains 328301 sequences. (Running on oeis4.)