This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078069 Expansion of (1-x)/(1+2*x+2*x^2). 5
 1, -3, 4, -2, -4, 12, -16, 8, 16, -48, 64, -32, -64, 192, -256, 128, 256, -768, 1024, -512, -1024, 3072, -4096, 2048, 4096, -12288, 16384, -8192, -16384, 49152, -65536, 32768, 65536, -196608, 262144, -131072, -262144, 786432, -1048576, 524288, 1048576, -3145728, 4194304, -2097152, -4194304 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Pisano period lengths: 1, 1, 8, 1, 4, 8, 24, 1, 24, 4, 40, 8, 12, 24, 8, 1, 16, 24, 72, 4,... - R. J. Mathar, Aug 10 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (-2,-2). FORMULA a(n) = (-2)*(a(n-1)+a(n-2)), n>1 ; a(0)=1, a(1)=-3. - Philippe Deléham, Nov 19 2008 a(n) = A108520(n)-A108520(n-1). - R. J. Mathar, Aug 11 2012 G.f.: G(0)*(1 - x)/(2*(1 + x)), where G(k)= 1 + 1/(1 - x*(k+1)/(x*(k+2) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 20 2013 MATHEMATICA CoefficientList[Series[(1-x)/(1+2x+2x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{-2, -2}, {1, -3}, 50] (* Harvey P. Dale, Jan 19 2012 *) PROG (PARI) Vec((1-x)/(1+2*x+2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012 CROSSREFS Cf. A090131. Sequence in context: A210875 A238373 * A090131 A152833 A139525 A246832 Adjacent sequences:  A078066 A078067 A078068 * A078070 A078071 A078072 KEYWORD sign,easy AUTHOR N. J. A. Sloane, Nov 17 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 23 20:23 EST 2017. Contains 295141 sequences.