OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.10 Quadratic recurrence constants, p. 443.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
Anna de Mier and Marc Noy, On the maximum number of cycles in outerplanar and series-parallel graphs, El. Notes Discr. Math., Vol. 34 (2009), pp. 489-493, Proposition 2.2.
Eric Weisstein's World of Mathematics, Quadratic Recurrence Equation.
FORMULA
Equals A076949^2. - Vaclav Kotesovec, Dec 17 2014
Equals exp(Sum_{k>=1} log(1+1/A003095(k)^2)/2^k) (Aho and Sloane, 1973). - Amiram Eldar, Feb 02 2022
EXAMPLE
1.5028368010497564997529364237321694087388717439635793069906714243...
MATHEMATICA
digits = 105; Clear[b, beta]; b[0] = 1; b[n_] := b[n] = b[n-1]^2 + 1; b[10]; beta[n_] := beta[n] = b[n]^(2^(-n)); beta[5]; beta[n = 6]; While[ RealDigits[beta[n], 10, digits+5] != RealDigits[beta[n-1], 10, digits+5], Print["n = ", n]; n = n+1]; RealDigits[beta[n], 10, digits] // First (* Jean-François Alcover, Jun 18 2014 *)
(* Second program *)
S[n_]:= S[n]= If[n==1, Log[2]/2, S[n-1] + Log[1 + 1/A003095[n]^2]/2^n];
RealDigits[Exp[S[13]], 10, 120][[1]] (* G. C. Greubel, Nov 29 2022 *)
PROG
(Magma)
function A003095(n)
if n eq 0 then return 0;
else return 1 + A003095(n-1)^2;
end if; return A003095;
end function;
function S(n)
if n eq 1 then return Log(2)/2;
else return S(n-1) + Log(1 + 1/A003095(n)^2)/2^n;
end if; return S;
end function;
SetDefaultRealField(RealField(120)); Exp(S(12)); // G. C. Greubel, Nov 29 2022
(SageMath)
@CachedFunction
@CachedFunction
def S(n): return log(2)/2 if (n==1) else S(n-1) + log(1 + 1/(A003095(n))^2)/2^n
numerical_approx( exp(S(12)), digits=120) # G. C. Greubel, Nov 29 2022
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, Dec 01 2002
STATUS
approved