login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A077496
Decimal expansion of lim_{n -> infinity} A001699(n)^(1/2^n).
5
1, 5, 0, 2, 8, 3, 6, 8, 0, 1, 0, 4, 9, 7, 5, 6, 4, 9, 9, 7, 5, 2, 9, 3, 6, 4, 2, 3, 7, 3, 2, 1, 6, 9, 4, 0, 8, 7, 3, 8, 8, 7, 1, 7, 4, 3, 9, 6, 3, 5, 7, 9, 3, 0, 6, 9, 9, 0, 6, 7, 1, 4, 2, 4, 3, 0, 8, 4, 7, 1, 9, 7, 8, 7, 1, 7, 5, 7, 6, 6, 0, 1, 9, 4, 5, 6, 6, 3, 3, 3, 9, 1, 7, 8, 6, 3, 0, 6, 1, 9, 8, 7, 2, 3, 7
OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.10 Quadratic recurrence constants, p. 443.
LINKS
A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
Anna de Mier and Marc Noy, On the maximum number of cycles in outerplanar and series-parallel graphs, El. Notes Discr. Math., Vol. 34 (2009), pp. 489-493, Proposition 2.2.
Eric Weisstein's World of Mathematics, Quadratic Recurrence Equation.
FORMULA
Equals A076949^2. - Vaclav Kotesovec, Dec 17 2014
Equals exp(Sum_{k>=1} log(1+1/A003095(k)^2)/2^k) (Aho and Sloane, 1973). - Amiram Eldar, Feb 02 2022
EXAMPLE
1.5028368010497564997529364237321694087388717439635793069906714243...
MATHEMATICA
digits = 105; Clear[b, beta]; b[0] = 1; b[n_] := b[n] = b[n-1]^2 + 1; b[10]; beta[n_] := beta[n] = b[n]^(2^(-n)); beta[5]; beta[n = 6]; While[ RealDigits[beta[n], 10, digits+5] != RealDigits[beta[n-1], 10, digits+5], Print["n = ", n]; n = n+1]; RealDigits[beta[n], 10, digits] // First (* Jean-François Alcover, Jun 18 2014 *)
(* Second program *)
A003095[n_]:= A003095[n]= If[n==0, 0, 1 + A003095[n-1]^2];
S[n_]:= S[n]= If[n==1, Log[2]/2, S[n-1] + Log[1 + 1/A003095[n]^2]/2^n];
RealDigits[Exp[S[13]], 10, 120][[1]] (* G. C. Greubel, Nov 29 2022 *)
PROG
(Magma)
function A003095(n)
if n eq 0 then return 0;
else return 1 + A003095(n-1)^2;
end if; return A003095;
end function;
function S(n)
if n eq 1 then return Log(2)/2;
else return S(n-1) + Log(1 + 1/A003095(n)^2)/2^n;
end if; return S;
end function;
SetDefaultRealField(RealField(120)); Exp(S(12)); // G. C. Greubel, Nov 29 2022
(SageMath)
@CachedFunction
def A003095(n): return 0 if (n==0) else 1 + A003095(n-1)^2
@CachedFunction
def S(n): return log(2)/2 if (n==1) else S(n-1) + log(1 + 1/(A003095(n))^2)/2^n
numerical_approx( exp(S(12)), digits=120) # G. C. Greubel, Nov 29 2022
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, Dec 01 2002
STATUS
approved