
REFERENCES

J. Bertin and C. Peters, Variations of Hodge structure ..., pp. 151232 of J. Bertin et al., eds., Introduction to Hodge Theory, Amer. Math. Soc. and Soc. Math. France, 2002; see p. 220.
D. A. Cox and S. Katz, Mirror Symmetry and Algebraic Geometry, Amer. Math. Soc., 1999.
Ellingsrud, Geir and Stromme, Stein Arild, The number of twisted cubic curves on the general quintic threefold (preliminary version). In Essays on Mirror Manifolds, 181222, Int. Press, Hong Kong, 1992.


LINKS

Table of n, a(n) for n=0..9.
V. Batyrev, Review of "Mirror Symmetry and Algebraic Geometry", by D. A. Cox and S. Katz, Bull. Amer. Math. Soc., 37 (No. 4, 2000), 473476.
P. Candelas et al., A pair of Calabiyau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991), 2174.
Geir Ellingsrud and Stein Arild Stromme, The number of twisted cubic curves on the general quintic threefold, Math. Scand. 76 (1995), no. 1, 534.
Geir Ellingsrud and Stein Arild Stromme, Bott's formula and enumerative geometry, J. Amer. Math. Soc. 9 (1996), 175193; arXiv:alggeom/9411005, 1994.
Steven R. Finch, Enumerative geometry, February 24, 2014. [Cached copy, with permission of the author]
Trygve Johnsen and Steven L. Kleiman, Rational curves of degree at most 9 on a general quintic threefold, arXiv:alggeom/9510015, 19951996.
Trygve Johnsen and Steven L. Kleiman, Toward Clemens' Conjecture in degrees between 10 and 24, arXiv:alggeom/9601024, 1996.
B. Mazur, Perturbations, deformations and variations (and "nearmisses") in geometry, physics, and number theory, Bull. Amer. Math. Soc., 41 (2004), 307336.
David R. Morrison, Mathematical Aspects of Mirror Symmetry, arXiv:alggeom/9609021, 1996; in Complex Algebraic Geometry (J. Kollár, ed.), IAS/Park City Math. Series, vol. 3, 1997, pp. 265340.
R. Pandharipande, Rational curves on hypersurfaces (after A. Givental), Séminaire Bourbaki, Vol. 1997/98. Astérisque No. 252 (1998), Exp. No. 848, 5, 307340.
ShingTung Yau and Steve Nadis, String Theory and the Geometry of the Universe's Hidden Dimensions, Notices Amer. Math. Soc., 58 (Sep 2011), 10671076.
