
REFERENCES

J. Bertin and C. Peters, Variations of Hodge structure ..., pp. 151232 of J. Bertin et al., eds., Introduction to Hodge Theory, Amer. Math. Soc. and Soc. Math. France, 2002; see p. 220.
P. Candelas et al., A pair of Calabiyau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991), 2174.
D. A. Cox and S. Katz, Mirror Symmetry and Algebraic Geometry, Amer. Math. Soc., 1999.
Ellingsrud, Geir and Stromme, Stein Arild, The number of twisted cubic curves on the general quintic threefold (preliminary version). In Essays on Mirror Manifolds, 181222, Int. Press, Hong Kong, 1992.
Ellingsrud, Geir and Stromme, Stein Arild, The number of twisted cubic curves on the general quintic threefold. Math. Scand. 76 (1995), no. 1, 534.
B. Mazur, Perturbations, deformations and variations ..., Bull. Amer. Math. Soc., 41 (2004), 307336.
R. Pandharipande, Rational curves on hypersurfaces (after A. Givental), Seminaire Bourbaki, Vol. 1997/98. Asterisque No. 252 (1998), Exp. No. 848, 5, 307340.


LINKS

Table of n, a(n) for n=0..9.
V. Batyrev, Review of "Mirror Symmetry and Algebraic Geometry", by D. A. Cox and S. Katz, Bull. Amer. Math. Soc., 37 (No. 4, 2000), 473476.
Ellingsrud, Geir and Stromme, Stein Arild, Bott's formula and enumerative geometry, J. Amer. Math. Soc. 9 (1996), 175193. [arXiv:alggeom/9411005]
Steven R. Finch, Enumerative geometry, February 24, 2014. [Cached copy, with permission of the author]
Trygve Johnsen and Steven L. Kleiman, Rational curves of degree at most 9 on a general quintic threefold, arXiv:alggeom/9510015.
Trygve Johnsen and Steven L. Kleiman, Toward Clemens' Conjecture in degrees between 10 and 24, arXiv:alggeom/9601024.
David R. Morrison, Mathematical Aspects of Mirror Symmetry, in Complex Algebraic Geometry (J. Koll\'ar, ed.), IAS/Park City Math. Series, vol. 3, 1997, pp. 265340.
ShingTung Yau and Steve Nadis, String Theory and the Geometry of the Universe's Hidden Dimensions, Notices Amer. Math. Soc., 58 (Sep 2011), 10671076.
