login
A076809
a(n) = n^4 + 853n^3 + 2636n^2 + 3536n + 1753.
7
1753, 8779, 26209, 59197, 112921, 192583, 303409, 450649, 639577, 875491, 1163713, 1509589, 1918489, 2395807, 2946961, 3577393, 4292569, 5097979, 5999137, 7001581, 8110873, 9332599, 10672369, 12135817, 13728601, 15456403, 17324929, 19339909, 21507097, 23832271, 26321233, 28979809, 31813849, 34829227
OFFSET
0,1
COMMENTS
A prime-generating quartic polynomial.
For n=0 ... 20, the terms in this sequence are primes. This is not the case for n=21. See A272325 and A272326. - Robert Price, Apr 25 2016
FORMULA
G.f.: -(x^4-1588*x^3-156*x^2+14*x+1753)/(x- 1)^5. [Colin Barker, Nov 11 2012]
E.g.f.: (1753 + 7026*x + 5202*x^2 + 859*x^3 + x^4)*exp(x). - Ilya Gutkovskiy, Apr 25 2016
MAPLE
A076809:=n->n^4 + 853*n^3 + 2636*n^2 + 3536*n + 1753; seq(A076809(n), n=0..100); # Wesley Ivan Hurt, Nov 13 2013
MATHEMATICA
Table[n^4 + 853n^3 + 2636n^2 + 3536n + 1753, {n, 0, 100}] (* Wesley Ivan Hurt, Nov 13 2013 *)
CoefficientList[Series[-(x^4 - 1588 x^3 - 156 x^2 + 14 x + 1753)/(x - 1)^5, {x, 0, 33}], x] (* Michael De Vlieger, Apr 25 2016 *)
PROG
(Maxima) A076809(n):=n^4 + 853*n^3 + 2636*n^2 + 3536*n + 1753$
makelist(A076809(n), n, 0, 30); /* Martin Ettl, Nov 08 2012 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Hilko Koning (hilko(AT)hilko.net), Nov 18 2002
EXTENSIONS
More terms from Michael De Vlieger, Apr 25 2016
STATUS
approved