login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A075702
n-th prime divides the n-th Fibonacci number.
5
2160, 3048, 27094, 251712, 505768, 936240, 2182656, 2582372, 487568736, 1261336587, 1424530096
OFFSET
1,1
COMMENTS
a(12) > 2*10^9. - Giovanni Resta, Jul 20 2013
Let r be a root of X^2 + 3*X + 1 in GF(prime(n)^2). Then n is in the sequence if and only if r^n = 1. - Robert Israel, Dec 24 2014
MAPLE
f:= proc(n)
local p, m, r, t, F;
p:= ithprime(n);
if member(p mod 5, {1, 4}) then
m:= igcd(n, p-1);
r:= (numtheory:-msqrt(5, p)-3)/2 mod p;
r &^ m mod p = 1
else
F:= GF(p, 2, t^2+3*t+1);
m:= igcd(n, p^2-1);
r:= F:-ConvertIn(t);
F:-ConvertOut(F:-`^`(r, m)) = 1
fi
end proc:
select(f, [$4 .. 10^5]); # Robert Israel, Dec 24 2014
MATHEMATICA
(* Mathematica's Fibonacci function is not used so as to speed up the search. *) fibo = {1, 1}; divFiboNPrimes = {}; Do[len = Length[fibo]; n = fibo[[len]] + fibo[[len - 1]]; fibo = Append[fibo, n]; If[Mod[n, Prime[i]] == 0, divFiboNPrimes = Append[divFiboNPrimes, i]], {i, 3, 10^7}]; divFiboNPrimes
PROG
(PARI) v=0; w=1; for(n=2, m, f=v+w; if(f%prime(n)==0, print1(n, ", ")); v=w; w=f)
CROSSREFS
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Oct 02 2002
EXTENSIONS
Three more terms from Klaus Brockhaus, Oct 04 2002
a(7,8) = 2182656, 2582372 from Zak Seidov, Nov 03 2009
a(9)-a(11) from Giovanni Resta, Jul 20 2013
STATUS
approved