OFFSET
1,2
COMMENTS
Also positive integers y in the solutions to 4*x^2-7*y^2-2*x+7*y-2 = 0, the corresponding values of x being A253714.
LINKS
Colin Barker, Table of n, a(n) for n = 1..416
Index entries for linear recurrences with constant coefficients, signature (1,64514,-64514,-1,1).
FORMULA
a(n) = a(n-1)+64514*a(n-2)-64514*a(n-3)-a(n-4)+a(n-5).
G.f.: x*(2159*x^3+32257*x^2-2159*x-1) / ((x-1)*(x^2-254*x+1)*(x^2+254*x+1)).
EXAMPLE
2160 is in the sequence because the 2160th centered heptagonal number is 16322041, which is also the 2857th hexagonal number.
MATHEMATICA
LinearRecurrence[{1, 64514, -64514, -1, 1}, {1, 2160, 34417, 139317984, 2220346081}, 20] (* Harvey P. Dale, Apr 10 2019 *)
PROG
(PARI) Vec(x*(2159*x^3+32257*x^2-2159*x-1)/((x-1)*(x^2-254*x+1)*(x^2+254*x+1)) + O(x^100))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jan 10 2015
STATUS
approved