login
A075261
y-value of the solution (x,y,z) to 3/(2n+1) = 1/x + 1/y + 1/z satisfying 0 < x < y < z, odd x, y, z and having the largest z-value. The x and z components are in A075260 and A075262.
3
5, 11, 9, 15, 33, 21, 17, 67, 33, 69, 113, 51, 87, 171, 77, 115, 241, 99, 155, 323, 129, 63, 417, 171, 265, 523, 201, 315, 641, 243, 375, 771, 299, 445, 913, 339, 525, 1067, 393, 609, 1233, 465, 297, 1411, 513, 785, 1601, 579, 885, 1803, 651, 999, 2017, 723
OFFSET
2,1
COMMENTS
See A075259 for more details.
MATHEMATICA
m=3; For[xLst={}; yLst={}; zLst={}; n=5, n<=200, n=n+2, cnt=0; xr=n/m; If[IntegerQ[xr], x=xr+1, x=Ceiling[xr]]; While[yr=1/(m/n-1/x); If[IntegerQ[yr], y=yr+1, y=Ceiling[yr]]; cnt==0&&y>x, While[zr=1/(m/n-1/x-1/y); cnt==0&&zr>y, If[IntegerQ[zr], z=zr; If[OddQ[x y z], cnt++; AppendTo[xLst, x]; AppendTo[yLst, y]; AppendTo[zLst, z]]]; y++ ]; x++ ]; If[cnt==0, AppendTo[xLst, 0]; AppendTo[yLst, 0]; AppendTo[zLst, 0]]]; yLst
CROSSREFS
KEYWORD
nice,nonn
AUTHOR
T. D. Noe, Sep 10 2002
STATUS
approved