login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A075075 a(1) = 1, a(2) = 2 and then the smallest number not occurring earlier such that every term divides the product of its neighbors: a(n-1)*a(n+1)/a(n) is an integer. 5
1, 2, 4, 6, 3, 5, 10, 8, 12, 9, 15, 20, 16, 24, 18, 21, 7, 11, 22, 14, 28, 26, 13, 17, 34, 30, 45, 27, 33, 44, 32, 40, 25, 35, 42, 36, 48, 52, 39, 51, 68, 56, 70, 50, 55, 66, 54, 63, 49, 77, 88, 64, 72, 81, 90, 60, 38, 19, 23, 46, 58, 29, 31, 62, 74, 37, 41, 82, 76, 114, 57, 43 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This is a permutation of natural numbers. [Leroy Quet asks (May 06 2009) if this is a theorem or just a conjecture.]

Every time a(n) divides a(n-1), a(n+1) is the next number that is not already in the sequence. I don't have a proof that a(n) divides a(n-1) infinitely often. - Franklin T. Adams-Watters, Jun 12 2014

It appears that a(n): 1,2,...,3,5,...,7,11,...,prime(2k),prime(2k+1),... - Thomas Ordowski, Jul 10 2015

The primes do appear to occur in increasing order, but prime(2k) is not always followed directly by prime(2k+1).  For example, a(72) = 43 = prime(14), but a(125) = 47 = prime(15). - Robert Israel, Jul 10 2015

If a(n) and a(n+1) are primes then a(n) divides a(n-1). - Thomas Ordowski, Jul 10 2015 [Cf. second comment]

a(n) is the least multiple of a(n-1)/gcd(a(n-2),a(n-1)) that has not previously occurred. - Robert Israel, Jul 10 2015

Conjecture: if a(n) divides a(n-1) then a(n+1) is prime. - Thomas Ordowski, Jul 11 2015

It seems that a(n) and a(n+1) are consecutive primes if and only if a(n) divides a(n-1) and a(n) < a(n+1). - Thomas Ordowski, Jul 13 2015

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..10000

MAPLE

b:= proc(n) option remember; false end: a:= proc(n) option remember; local k, m; if n<3 then b(n):= true; n else m:= denom(a(n-2) /a(n-1)); for k from m by m while b(k) do od; b(k):= true; k fi end: seq(a(n), n=1..100); # Alois P. Heinz, May 16 2009

MATHEMATICA

f[s_List] := Block[{m = Numerator[ s[[ -1]]/s[[ -2]] ]}, k = m; While[ MemberQ[s, k], k += m]; Append[s, k]]; Nest[f, {1, 2}, 70] (* Robert G. Wilson v, May 20 2009 *)

PROG

(Haskell)

import Data.List (delete)

a075075 n = a075075_list !! (n-1)

a075075_list = 1 : 2 : f 1 2 [3..] where

  f z z' xs = g xs where g (u:us) =

    if (z * u) `mod` z' > 0 then g us else u : f z' u (delete u xs)

-- Reinhard Zumkeller, Dec 19 2012

(Python)

from __future__ import division

from fractions import gcd

A075075_list, l1, l2, m, b = [1, 2], 2, 1, 2, {1, 2}

for _ in range(10**3):

....i = m

....while True:

........if not i in b:

............A075075_list.append(i)

............l1, l2, m = i, l1, i//gcd(l1, i)

............b.add(i)

............break

........i += m # Chai Wah Wu, Dec 09 2014

(MATLAB)

N = 10^6;

Avail = ones(1, N);

A = zeros(1, N);

A(1) = 1; A(2) = 2;

Avail([1, 2]) = 0;

for n=3:N

  q = round(A(n-1)/gcd(A(n-1), A(n-2)));

  b = find(Avail(q*[1:floor(N/q)]), 1, 'first');

  if numel(b) == 0

     break

  end

  A(n) = q*b;

  Avail(A(n)) = 0;

end

A = A(1:n-1); % Robert Israel, Jul 10 2015

CROSSREFS

Cf. A075076 (ratios), A160256, A064413 (EKG sequence).

Cf. A160516 (inverse), A185635 (fixed points).

Sequence in context: A076179 A175213 A104492 * A088178 A259840 A161184

Adjacent sequences:  A075072 A075073 A075074 * A075076 A075077 A075078

KEYWORD

nice,nonn,look

AUTHOR

Amarnath Murthy, Sep 09 2002

EXTENSIONS

More terms from Sascha Kurz, Feb 03 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 22 08:57 EST 2017. Contains 295076 sequences.