login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A075075 a(1) = 1, a(2) = 2 and then the smallest number not occurring earlier such that every term divides the product of its neighbors: a(n-1)*a(n+1)/a(n) is an integer. 5
1, 2, 4, 6, 3, 5, 10, 8, 12, 9, 15, 20, 16, 24, 18, 21, 7, 11, 22, 14, 28, 26, 13, 17, 34, 30, 45, 27, 33, 44, 32, 40, 25, 35, 42, 36, 48, 52, 39, 51, 68, 56, 70, 50, 55, 66, 54, 63, 49, 77, 88, 64, 72, 81, 90, 60, 38, 19, 23, 46, 58, 29, 31, 62, 74, 37, 41, 82, 76, 114, 57, 43 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This is a permutation of natural numbers. [Leroy Quet asks (May 06 2009) if this is a theorem or just a conjecture.]

Every time a(n) divides a(n-1), a(n+1) is the next number that is not already in the sequence. I don't have a proof that a(n) divides a(n-1) infinitely often. - Franklin T. Adams-Watters, Jun 12 2014

It appears that a(n): 1,2,...,3,5,...,7,11,...,prime(2k),prime(2k+1),... - Thomas Ordowski, Jul 10 2015

The primes do appear to occur in increasing order, but prime(2k) is not always followed directly by prime(2k+1).  For example, a(72) = 43 = prime(14), but a(125) = 47 = prime(15). - Robert Israel, Jul 10 2015

If a(n) and a(n+1) are primes then a(n) divides a(n-1). - Thomas Ordowski, Jul 10 2015 [Cf. second comment]

a(n) is the least multiple of a(n-1)/gcd(a(n-2),a(n-1)) that has not previously occurred. - Robert Israel, Jul 10 2015

Conjecture: if a(n) divides a(n-1) then a(n+1) is prime. - Thomas Ordowski, Jul 11 2015

It seems that a(n) and a(n+1) are consecutive primes if and only if a(n) divides a(n-1) and a(n) < a(n+1). - Thomas Ordowski, Jul 13 2015

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..10000

MAPLE

b:= proc(n) option remember; false end: a:= proc(n) option remember; local k, m; if n<3 then b(n):= true; n else m:= denom(a(n-2) /a(n-1)); for k from m by m while b(k) do od; b(k):= true; k fi end: seq(a(n), n=1..100); # Alois P. Heinz, May 16 2009

MATHEMATICA

f[s_List] := Block[{m = Numerator[ s[[ -1]]/s[[ -2]] ]}, k = m; While[ MemberQ[s, k], k += m]; Append[s, k]]; Nest[f, {1, 2}, 70] (* Robert G. Wilson v, May 20 2009 *)

PROG

(Haskell)

import Data.List (delete)

a075075 n = a075075_list !! (n-1)

a075075_list = 1 : 2 : f 1 2 [3..] where

  f z z' xs = g xs where g (u:us) =

    if (z * u) `mod` z' > 0 then g us else u : f z' u (delete u xs)

-- Reinhard Zumkeller, Dec 19 2012

(Python)

from __future__ import division

from fractions import gcd

A075075_list, l1, l2, m, b = [1, 2], 2, 1, 2, {1, 2}

for _ in range(10**3):

....i = m

....while True:

........if not i in b:

............A075075_list.append(i)

............l1, l2, m = i, l1, i//gcd(l1, i)

............b.add(i)

............break

........i += m # Chai Wah Wu, Dec 09 2014

(MATLAB)

N = 10^6;

Avail = ones(1, N);

A = zeros(1, N);

A(1) = 1; A(2) = 2;

Avail([1, 2]) = 0;

for n=3:N

  q = round(A(n-1)/gcd(A(n-1), A(n-2)));

  b = find(Avail(q*[1:floor(N/q)]), 1, 'first');

  if numel(b) == 0

     break

  end

  A(n) = q*b;

  Avail(A(n)) = 0;

end

A = A(1:n-1); % Robert Israel, Jul 10 2015

CROSSREFS

Cf. A075076 (ratios), A160256, A064413 (EKG sequence).

Cf. A160516 (inverse), A185635 (fixed points).

Sequence in context: A076179 A175213 A104492 * A088178 A259840 A161184

Adjacent sequences:  A075072 A075073 A075074 * A075076 A075077 A075078

KEYWORD

nice,nonn,look

AUTHOR

Amarnath Murthy, Sep 09 2002

EXTENSIONS

More terms from Sascha Kurz, Feb 03 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 18 18:12 EDT 2017. Contains 290732 sequences.