This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A075075 a(1) = 1, a(2) = 2 and then the smallest number not occurring earlier such that every term divides the product of its neighbors: a(n-1)*a(n+1)/a(n) is an integer. 5
 1, 2, 4, 6, 3, 5, 10, 8, 12, 9, 15, 20, 16, 24, 18, 21, 7, 11, 22, 14, 28, 26, 13, 17, 34, 30, 45, 27, 33, 44, 32, 40, 25, 35, 42, 36, 48, 52, 39, 51, 68, 56, 70, 50, 55, 66, 54, 63, 49, 77, 88, 64, 72, 81, 90, 60, 38, 19, 23, 46, 58, 29, 31, 62, 74, 37, 41, 82, 76, 114, 57, 43 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This is a permutation of natural numbers. [Leroy Quet asks (May 06 2009) if this is a theorem or just a conjecture.] Every time a(n) divides a(n-1), a(n+1) is the next number that is not already in the sequence. I don't have a proof that a(n) divides a(n-1) infinitely often. - Franklin T. Adams-Watters, Jun 12 2014 It appears that a(n): 1,2,...,3,5,...,7,11,...,prime(2k),prime(2k+1),... - Thomas Ordowski, Jul 10 2015 The primes do appear to occur in increasing order, but prime(2k) is not always followed directly by prime(2k+1).  For example, a(72) = 43 = prime(14), but a(125) = 47 = prime(15). - Robert Israel, Jul 10 2015 If a(n) and a(n+1) are primes then a(n) divides a(n-1). - Thomas Ordowski, Jul 10 2015 [Cf. second comment] a(n) is the least multiple of a(n-1)/gcd(a(n-2),a(n-1)) that has not previously occurred. - Robert Israel, Jul 10 2015 Conjecture: if a(n) divides a(n-1) then a(n+1) is prime. - Thomas Ordowski, Jul 11 2015 It seems that a(n) and a(n+1) are consecutive primes if and only if a(n) divides a(n-1) and a(n) < a(n+1). - Thomas Ordowski, Jul 13 2015 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..10000 MAPLE b:= proc(n) option remember; false end: a:= proc(n) option remember; local k, m; if n<3 then b(n):= true; n else m:= denom(a(n-2) /a(n-1)); for k from m by m while b(k) do od; b(k):= true; k fi end: seq(a(n), n=1..100); # Alois P. Heinz, May 16 2009 MATHEMATICA f[s_List] := Block[{m = Numerator[ s[[ -1]]/s[[ -2]] ]}, k = m; While[ MemberQ[s, k], k += m]; Append[s, k]]; Nest[f, {1, 2}, 70] (* Robert G. Wilson v, May 20 2009 *) PROG (Haskell) import Data.List (delete) a075075 n = a075075_list !! (n-1) a075075_list = 1 : 2 : f 1 2 [3..] where   f z z' xs = g xs where g (u:us) =     if (z * u) `mod` z' > 0 then g us else u : f z' u (delete u xs) -- Reinhard Zumkeller, Dec 19 2012 (Python) from __future__ import division from fractions import gcd A075075_list, l1, l2, m, b = [1, 2], 2, 1, 2, {1, 2} for _ in range(10**3): ....i = m ....while True: ........if not i in b: ............A075075_list.append(i) ............l1, l2, m = i, l1, i//gcd(l1, i) ............b.add(i) ............break ........i += m # Chai Wah Wu, Dec 09 2014 (MATLAB) N = 10^6; Avail = ones(1, N); A = zeros(1, N); A(1) = 1; A(2) = 2; Avail([1, 2]) = 0; for n=3:N   q = round(A(n-1)/gcd(A(n-1), A(n-2)));   b = find(Avail(q*[1:floor(N/q)]), 1, 'first');   if numel(b) == 0      break   end   A(n) = q*b;   Avail(A(n)) = 0; end A = A(1:n-1); % Robert Israel, Jul 10 2015 CROSSREFS Cf. A075076 (ratios), A160256, A064413 (EKG sequence). Cf. A160516 (inverse), A185635 (fixed points). Sequence in context: A076179 A175213 A104492 * A088178 A259840 A161184 Adjacent sequences:  A075072 A075073 A075074 * A075076 A075077 A075078 KEYWORD nice,nonn,look AUTHOR Amarnath Murthy, Sep 09 2002 EXTENSIONS More terms from Sascha Kurz, Feb 03 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.