OFFSET
1,1
COMMENTS
This sequence is infinite: Golomb, "Shift Register Sequences," on p. 96 (1st ed., 1966) states that "It is easy to exhibit an infinite class of irreducible trinomials. viz. x^(2*3^a) + x^(3^a) + 1 for all a = 0, 1, 2, ..., but whose roots have only 3^(a+1) as their period." - A. M. Odlyzko, Dec 05 1997.
REFERENCES
S. W. Golomb, "Shift register sequence", revised edition, reprinted by Aegean Park Press, 1982. See Tables V-1, V-2.
LINKS
Joerg Arndt, Table of n, a(n) for n = 1..1500
A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, 1996; see Table 4.6.
MAPLE
a := proc(n) local k; for k from 1 to n-1 do if Irreduc(x^n+x^k+1) mod 2 then RETURN(n) fi od; NULL end: [seq(a(n), n=1..130)];
MATHEMATICA
irreducibleQ[n_] := (irr = False; k = 1; While[k < n, If[ Factor[ x^n + x^k + 1, Modulus -> 2] == x^n + x^k + 1, irr = True; Break[]]; k++]; irr); Select[ Range[120], irreducibleQ] (* Jean-François Alcover, Jan 07 2013 *)
PROG
(PARI) is(n)=for(s=1, n-1, if(polisirreducible((x^n+x^s+1)*Mod(1, 2)), return(1))); 0 \\ Charles R Greathouse IV, May 30 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul Zimmermann, Sep 05 2002
STATUS
approved