

A057646


a(n) = number of trinomials x^n + x^k + 1 that are irreducible over GF(2) for some k with n > k > 0.


4



1, 2, 2, 2, 3, 4, 0, 4, 2, 2, 4, 0, 2, 6, 0, 6, 5, 0, 4, 4, 2, 4, 0, 4, 0, 0, 8, 2, 4, 8, 0, 4, 2, 2, 6, 0, 0, 6, 0, 4, 2, 0, 2, 0, 2, 8, 0, 8, 0, 0, 8, 0, 5, 4, 0, 8, 2, 0, 12, 0, 2, 10, 0, 4, 2, 0, 4, 0, 0, 10, 0, 6, 2, 0, 2, 0, 0, 4, 0, 6, 0, 0, 14, 0, 2, 2, 0, 2, 2, 0, 2, 2, 2, 4, 0, 8, 4, 0, 10
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,2


COMMENTS

Brent, Hart, Kruppa, and Zimmermann found that a(57885161) = 0.  Charles R Greathouse IV, May 30 2013


LINKS

T. D. Noe, Table of n, a(n) for n = 2..500
Paul Zimmermann, There is no primitive trinomial of degree 57885161 over GF(2), posting to NMBRTHRY mailing list [alternate link]


EXAMPLE

a(7) = 4 because 1 + x + x^7 = 1 + x + x^7, 1 + x^2 + x^7 = (1 + x + x^2)*(1 + x + x^2 + x^4 + x^5), 1 + x^3 + x^7 = 1 + x^3 + x^7, 1 + x^4 + x^7 = 1 + x^4 + x^7, 1 + x^5 + x^7 = (1 + x + x^2)*(1 + x + x^3 + x^4 + x^5) and 1 + x^6 + x^7 = 1 + x^6 + x^7. Thus there are 4 trinomial expressions which cannot be factored over GF(2) and 2 trinomial expressions which do factor.


PROG

(PARI) a(n)=sum(s=1, n1, polisirreducible((x^n+x^s+1)*Mod(1, 2))) \\ Charles R Greathouse IV, May 30 2013


CROSSREFS

For n such that a(n) > 0 see A073571.
Sequence in context: A131704 A327746 A124492 * A238892 A238279 A282933
Adjacent sequences: A057643 A057644 A057645 * A057647 A057648 A057649


KEYWORD

nonn,easy,nice


AUTHOR

Robert G. Wilson v, Oct 11 2000


STATUS

approved



