login
A073365
Decimal expansion of log(log(Pi)).
0
1, 3, 5, 1, 6, 8, 7, 0, 1, 6, 2, 0, 5, 2, 9, 6, 2, 7, 6, 9, 9, 9, 5, 8, 1, 2, 8, 2, 3, 5, 1, 5, 9, 2, 9, 8, 6, 6, 8, 4, 2, 1, 8, 9, 5, 7, 3, 2, 0, 6, 4, 2, 5, 0, 4, 2, 0, 5, 3, 6, 0, 7, 4, 6, 0, 6, 5, 9, 8, 2, 6, 9, 3, 7, 7, 0, 3, 0, 4, 4, 7, 0, 9, 6, 9, 7, 3, 4, 6, 8, 5, 9, 0, 9, 3, 8, 5, 7, 4, 3, 3, 6, 8, 4
OFFSET
0,2
COMMENTS
Cheng, Dietel, Herblot, Huang, Krieger, Marques, Mason, Mereb, & Wilson show, expanding a remark by S. Lang, that Schanuel's conjecture implies that this constant and Pi are algebraically independent over a set E which includes the algebraic numbers and (in a technical sense) allows any finite number of exponentiations, see the paper for details and a still more general result. - Charles R Greathouse IV, Dec 16 2019
LINKS
Chuangxun Cheng, Brian Dietel, Mathilde Herblot, Jingjing Huang, Holly Krieger, Diego Marques, Jonathan Mason, Martin Mereb, S. Robert Wilson, Some consequences of Schanuel's conjecture, Journal of Number Theory 129:6 (2009), pp. 1464-1467.
EXAMPLE
0.13516870162052962769995812823...
MATHEMATICA
RealDigits[Log[Log[Pi]], 10, 120][[1]] (* Harvey P. Dale, Mar 11 2017 *)
PROG
(PARI) log(log(Pi))
CROSSREFS
Cf. A000796 (Pi), A053510 (log(Pi)), A053511 (log_10(Pi)).
Sequence in context: A333336 A061649 A237603 * A316152 A302204 A065077
KEYWORD
cons,nonn
AUTHOR
Rick L. Shepherd, Jul 29 2002
STATUS
approved