login
A073362
Nested floor product of n and fractions (k+1)/k for all k>0 (mod 5), divided by 5.
2
1, 6, 19, 48, 109, 234, 355, 552, 1009, 1518, 2371, 3804, 4141, 6342, 8803, 12096, 14389, 18438, 24043, 27720, 36397, 45366, 60499, 75876, 80137, 97566, 114931, 140892, 166321, 205926, 218587, 266664, 292429, 342006, 394651, 477336, 481429
OFFSET
1,2
FORMULA
a(n)=(1/5)[...[[[[n(2/1)](3/2)](4/3)](5/4)](7/6)]...(k+1)/k]..., k>0 (mod 5), where [x] = floor of x; this infinite nested floor product will eventually level-off at a(n).
EXAMPLE
a(1)=1 since (1/5)[[[[1(2/1)](3/2)](4/3)](5/4)]=1
MATHEMATICA
f[n_] := Block[{k = 1, p = n}, While[q = Floor[p*(k + 1)/k]; q != p, p = q; k++; If[ Mod[k, 5] == 0, k++ ]]; p/5]; Table[ f[n], {n, 1, 37}] (* Robert G. Wilson v *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul D. Hanna, Jul 29 2002
EXTENSIONS
More terms from Robert G. Wilson v, Dec 27 2003
STATUS
approved