login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073188 n appears 1+[n/3] times. 1
0, 1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The PARI functions t1, t2 can be used to read a triangular array T(n,k) (n >= 0, 0 <= k <= floor(n/3)) by rows from left to right: n -> T(t1(n), t2(n)).

a(A001840(k) + j) = A001840(k), 0<=j < A008620(k). - Reinhard Zumkeller, Aug 01 2002

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..6900

M. Somos, Sequences used for indexing triangular or square arrays

FORMULA

a(n) = floor(sqrt(6n+6)-3/2).

a(0)=0, then for n>=1 a(n)=1+a(n-1-floor(a(n-1)/3)). - Benoit Cloitre, May 08 2017

MATHEMATICA

Flatten[Table[c=1+Floor[n/3]; Table[n, {c}], {n, 0, 20}]] (* Harvey P. Dale, Nov 01 2013 *)

PROG

(PARI) a(n)=floor(sqrt(6*n+6)-3/2)

(PARI) t1(n)=floor(sqrt(6*n+6)-3/2) /* A073188 */

(PARI) t2(n)=(n-3*binomial(1+t1(n)\3, 2))%(t1(n)\3+1) /* A073189 */

(PARI) a(n)=if(n<1, 0, a(n-a(n-1)\3-1)+1) \\ Benoit Cloitre, May 08 2017

(MAGMA) [Floor(Sqrt(6*n+6)-3/2): n in [0..50]]; // G. C. Greubel, May 29 2018

CROSSREFS

Cf. A073189.

Sequence in context: A303601 A031247 A062575 * A269225 A217713 A047740

Adjacent sequences:  A073185 A073186 A073187 * A073189 A073190 A073191

KEYWORD

nonn

AUTHOR

Michael Somos, Jul 19 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 20:04 EDT 2019. Contains 328037 sequences. (Running on oeis4.)