This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A072513 Product of all n - d, where d < n and d is a divisor of n. 7
 1, 1, 2, 6, 4, 60, 6, 168, 48, 360, 10, 47520, 12, 1092, 1680, 20160, 16, 440640, 18, 820800, 5040, 4620, 22, 734469120, 480, 7800, 11232, 4953312, 28, 3946320000, 30, 9999360, 21120, 17952, 28560, 439723468800, 36, 25308, 35568, 35852544000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Ivan Neretin, Table of n, a(n) for n = 1..1000 FORMULA a(n) = (n-d_1)(n-d_2)...(n-d_k) where d_k is the largest divisor of n less than n (k = tau(n) - 1). a(p) = p-1, a(pq) = pq(p-1)(q-1)(pq-1), p and q prime. If n is not a prime or the square of a prime then n divides a(n). EXAMPLE a(6) = (6-1)(6-2)(6-3) = 60. For n = 16 the divisors d < n are 1,2,4 and 8, so a(16) = (16-1)*(16-2)*(16-4)*(16-8) = 15*14*12*8 = 20160. MATHEMATICA Table[Times @@ (n - Most[Divisors[n]]), {n, 1, 40}] (* Ivan Neretin, May 26 2015 *) PROG (PARI) for(n=1, 40, d=divisors(n); print1(prod(j=1, matsize(d)[2]-1, n-d[j]), ", ")) (PARI) a(n)=factorback(apply(d->if(d

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 00:03 EDT 2019. Contains 328103 sequences. (Running on oeis4.)