OFFSET
1,2
COMMENTS
The "piece" in question is also called a "tribone" [Ardila and Stanley]. - N. J. A. Sloane, Feb 27 2014
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
F. Ardila and R. P. Stanley, Tilings, arXiv:math/0501170 [math.CO], 2005.
J. H. Conway and J. C. Lagarias, Tiling with Polyominoes and Combinatorial Group Theory, Journal of Combinatorial Theory, Series A 53 (1990), 183-208. [From N. J. A. Sloane, Jul 04 2011]
Jim McCann, Triangle Sequence
N. C. Saldanha and C. Tomei, An overview of domino and lozenge tilings, arXiv:math/9801111 [math.CO], 1998.
Torsten Sillke, A Word Problem
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
FORMULA
A number n is in the sequence iff n == 0, 2, 9 or 11 (mod 12). See Conway-Lagarias or the Sillke link. - Sascha Kurz, Mar 04 2003
a(1)=0, a(2)=2, a(3)=9, a(4)=11, a(5)=12, a(n) = a(n-1)+a(n-4)-a(n-5). - Harvey P. Dale, Jan 30 2015
From Colin Barker, Dec 12 2015: (Start)
a(n) = (3/4+(3*i)/4)*(i^n-i*(-i)^n)-(-1)^n/2+3*(n+1)-5 where i = sqrt(-1).
G.f.: x^2*(2+7*x+2*x^2+x^3) / ((1-x)^2*(1+x)*(1+x^2)). (End)
E.g.f.: (2 + 3*cos(x) + (6*x - 5)*cosh(x) - 3*sin(x) + (6*x - 3)*sinh(x))/2. - Stefano Spezia, May 05 2022
a(n) = (6*n-4-(-1)^n+3*(-1)^((2*n+1-(-1)^n)/4))/2. - Wesley Ivan Hurt, Nov 09 2023
EXAMPLE
A possible side-9 arrangement:
A
A A
B B C
D B C C
D D E E F
G H H E F F
G G H I I J J
K L L M I N J O
K K L M M N N O O
MAPLE
f:=r-> {seq(12*i+r, i=0..100)}; t1:= f(0) union f(2) union f(9) union f(11); t2:=sort(convert(t1, list)); # N. J. A. Sloane, Jul 04 2011
MATHEMATICA
Select[Range[0, 200], MemberQ[{0, 2, 9, 11}, Mod[#, 12]]&] (* Harvey P. Dale, Dec 15 2011 *)
LinearRecurrence[{1, 0, 0, 1, -1}, {0, 2, 9, 11, 12}, 70] (* Harvey P. Dale, Jan 30 2015 *)
PROG
(Haskell)
a072065 n = a072065_list !! n
a072065_list = filter ((`elem` [0, 2, 9, 11]) . (`mod` 12)) [0..]
-- Reinhard Zumkeller, Jan 09 2013
(PARI) concat(0, Vec(x^2*(2+7*x+2*x^2+x^3)/((1-x)^2*(1+x)*(1+x^2)) + O(x^100))) \\ Colin Barker, Dec 12 2015
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
Jim McCann (jmccann(AT)umich.edu), Aug 04 2002
EXTENSIONS
Offset corrected by Reinhard Zumkeller, Jan 09 2013
STATUS
approved