|
|
A065554
|
|
Numbers n such that floor((3/2)^(n+1))/floor((3/2)^n) = 3/2.
|
|
10
|
|
|
2, 9, 11, 13, 24, 29, 31, 36, 37, 40, 41, 43, 49, 50, 51, 67, 68, 70, 72, 73, 77, 79, 80, 86, 88, 91, 92, 95, 101, 102, 103, 115, 121, 126, 127, 132, 134, 136, 142, 145, 146, 151, 154, 156, 162, 165, 167, 171, 172, 176, 178, 179, 181, 191, 193, 194, 195, 198, 199
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Also n such that A002380(n+1) = 3*A002380(n). - Benoit Cloitre, Apr 21 2003
It appears that lim_{n->infinity} a(n)/n = 3. - Benoit Cloitre, Jan 29 2006
|
|
LINKS
|
Harry J. Smith, Table of n, a(n) for n = 1..1000
|
|
MATHEMATICA
|
a[1] = 2; a[n_ ] := a[n] = Block[ {k = a[n - 1] + 1}, While[ Floor[(3/2)^(k + 1)] / Floor[(3/2)^k] != 3/2, k++ ]; Return[k]]; Table[ a[n], {n, 1, 70} ]
|
|
PROG
|
(PARI) { n=0; for (m=1, 10^9, x=floor((3/2)^(m+1))/floor((3/2)^m); if (2*x==3, write("b065554.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 22 2009
|
|
CROSSREFS
|
Cf. A002379.
Sequence in context: A072065 A137000 A073634 * A034042 A138759 A345925
Adjacent sequences: A065551 A065552 A065553 * A065555 A065556 A065557
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Benoit Cloitre, Nov 28 2001
|
|
EXTENSIONS
|
More terms from Robert G. Wilson v, Nov 30 2001
|
|
STATUS
|
approved
|
|
|
|