OFFSET
0,9
COMMENTS
Read as a number triangle, this is the Riordan array (1, x(1+x+x^2)) with T(n,k) = Sum_{i=0..floor((n+k)/2)} C(k,2i+2k-n)*C(2i+2k-n,i). Rows start {1}, {0,1}, {0,1,1}, {0,1,2,1}, {0,0,3,3,1},... Row sums are then the trinomial numbers A000073(n+2). Diagonal sums are A013979. - Paul Barry, Feb 15 2005
Let {a_(k,i)}, k>=1, i=0,...,k, be the k-th antidiagonal of the array. Then s_k(n)=sum{i=0,...,k}a_(k,i)* binomial(n,k) is the n-th element of the k-th column of A213742. For example, s_1(n)=binomial(n,1)=n is the first column of A213742 for n>1, s_2(n)=binomial(n,1)+binomial(n,2)is the second column of A213742 for n>1, etc. In particular (see comment in A213742) in cases k=4,5,6,7,8, s_k(n) is A005718(n+2), A005719(n), A005720(n), A001919(n), A064055(n+3), respectively. - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
LINKS
G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3
FORMULA
T(n, k) = T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) starting with T(0, 0)=1. See A027907 for more.
As a number triangle, T(n, k) = Sum_{i=0..floor((n-k)/2)} C(n-k-i, i) * C(k, n-k-i). - Paul Barry, Apr 26 2005
EXAMPLE
Rows start
1, 0, 0, 0, 0, 0, ...;
1, 1, 1, 0, 0, 0, 0, ...;
1, 2, 3, 2, 1, 0, 0, ...;
1, 3, 6, 7, 6, 3, 1, 0, ...;
1, 4, 10, 16, 19, 16, 10, 4, 1, ...; etc.
MATHEMATICA
T[n_, k_] := Sum[Binomial[n - k - j, j]*Binomial[k, n - k - j], {j, 0,
Floor[(n - k)/2]}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Feb 28 2017 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Henry Bottomley, May 30 2002
STATUS
approved