login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071620
Integer lengths of the Champernowne primes (concatenation of first a(n) entries (digits) of A033307 is prime).
5
10, 14, 24, 235, 2804, 4347, 37735
OFFSET
1,1
COMMENTS
Next term has n > 113821. - Eric W. Weisstein, Nov 04 2015
Also: concatenation of A007376(1 .. a(n)) is prime. - M. F. Hasler, Oct 23 2019
LINKS
Eric Weisstein's World of Mathematics, Champernowne Constant Digits
Eric Weisstein's World of Mathematics, Consecutive Number Sequences
Eric Weisstein's World of Mathematics, Constant Primes
Eric Weisstein's World of Mathematics, Integer Sequence Primes
Eric Weisstein's World of Mathematics, Smarandache Prime
MATHEMATICA
f[0] = 0; f[n_Integer] := 10^(Floor[Log[10, n]] + 1)*f[n - 1] + n; Do[If[PrimeQ[FromDigits[Take[IntegerDigits[f[n]], n]]], Print[n]], {n, 1, 3000}]
Cases[FromDigits /@ Rest[FoldList[Append, {}, RealDigits[N[ChampernowneNumber[], 1000]][[1]]]], p_?PrimeQ :> IntegerLength[p]] (* Eric W. Weisstein, Nov 04 2015 *)
PROG
(Python)
from itertools import count, islice
from sympy import isprime
def A071620_gen(): # generator of terms
c, l = 0, 0
for n in count(1):
for d in str(n):
c = 10*c+int(d)
l += 1
if isprime(c):
yield l
A071620_list = list(islice(A071620_gen(), 5)) # Chai Wah Wu, Feb 27 2023
CROSSREFS
Cf. A007376 (infinite Barbier word = almost-natural numbers: write n in base 10 and juxtapose digits).
Cf. A033307 (decimal expansion of Champernowne constant), A176942 (the corresponding primes of length a(n)), A265043.
Cf. A072125.
Sequence in context: A069207 A168671 A136197 * A175664 A053690 A177948
KEYWORD
nonn,base,hard,more
AUTHOR
Robert G. Wilson v, Jun 21 2002
EXTENSIONS
Edited by Charles R Greathouse IV, Apr 28 2010
a(6) = 4347 from Eric W. Weisstein, Jul 14 2013
a(7) = 37735 from Eric W. Weisstein, Jul 15 2013
STATUS
approved