OFFSET
0,1
COMMENTS
Row n has length n+1.
From Gary W. Adamson, May 15 2010: (Start)
Eigensequence of the triangle = A038754 (i.e., 1, 1, 2, 3, 6, 9, 18, ...) shifts to the left with multiplication by triangle A070909.
From Paul Barry, Nov 03 2010: (Start)
Generalized (conditional) Riordan array with k-th column generated by x^k/(1-x) if k is even, x^k otherwise.
From Peter Bala, Aug 15 2021: (Start)
Double Riordan array (1/(1 - x); x*(1 - x), x/(1 - x)) as defined in Davenport et al. The inverse array is the double Riordan array (1 - x - x^2; x/(1 - x - x^2), x*(1 - x - x^2)).
In general, double Riordan arrays of the form (g(x); x/g(x), x*g(x)), where g(x) = 1 + g_1*x + g_2*x^2 + ..., form a group under matrix multiplication with the group law given by (g(x); x/g(x), x*g(x)) * (G(x); x/G(x), x*G(x)) = (h(x); x/h(x), x*h(x)), where h(x) = G(x) + (g(x) - 1)*(G(x) + G(-x))/2. The inverse array of (g(x); x/g(x), x*g(x)) equals (f(x); x/f(x), x*f(x)), where f(x) = (2 - (g(x) - g(-x)))/(g(x) + g(-x)). (End)
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; Chapter 3.
LINKS
D. E. Davenport, L. W. Shapiro and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012).
Eric Weisstein's World of Mathematics, Rule 28
EXAMPLE
From Paul Barry, Nov 03 2010: (Start)
Triangle begins
1;
1, 1;
1, 0, 1;
1, 0, 1, 1;
1, 0, 1, 0, 1;
1, 0, 1, 0, 1, 1;
1, 0, 1, 0, 1, 0, 1;
1, 0, 1, 0, 1, 0, 1, 1;
1, 0, 1, 0, 1, 0, 1, 0, 1;
1, 0, 1, 0, 1, 0, 1, 0, 1, 1;
Production matrix begins
1, 1;
0, -1, 1;
0, -1, 1, 1;
0, 0, 0, -1, 1;
0, 0, 0, -1, 1, 1;
0, 0, 0, 0, 0, -1, 1;
0, 0, 0, 0, 0, -1, 1, 1;
0, 0, 0, 0, 0, 0, 0, -1, 1;
0, 0, 0, 0, 0, 0, 0, -1, 1, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1; (End)
MATHEMATICA
rows = 14; ca = CellularAutomaton[28, {{1}, 0}, rows-1]; Flatten[Table[ca[[k, 1 ;; k]], {k, 1, rows}]] (* Jean-François Alcover, May 24 2012 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Hans Havermann, May 26 2002
STATUS
approved