login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070477
a(n) = n^3 mod 15.
2
0, 1, 8, 12, 4, 5, 6, 13, 2, 9, 10, 11, 3, 7, 14, 0, 1, 8, 12, 4, 5, 6, 13, 2, 9, 10, 11, 3, 7, 14, 0, 1, 8, 12, 4, 5, 6, 13, 2, 9, 10, 11, 3, 7, 14, 0, 1, 8, 12, 4, 5, 6, 13, 2, 9, 10, 11, 3, 7, 14, 0, 1, 8, 12, 4, 5, 6, 13, 2, 9, 10, 11, 3, 7, 14, 0, 1, 8, 12, 4, 5, 6, 13, 2, 9, 10, 11, 3, 7, 14
OFFSET
0,3
COMMENTS
It is also true that a(n) = n^(4k+3) mod 15 holds any k. - Gary Detlefs, Dec 15 2021
LINKS
FORMULA
From G. C. Greubel, Mar 28 2016: (Start)
a(n) = a(n-15).
G.f.: (-x -8*x^2 -12*x^3 -4*x^4 -5*x^5 -6*x^6 -13*x^7 -2*x^8 -9*x^9 - 10*x^10 -11*x^11 -3*x^12 -7*x^13 -14*x^14)/(-1 + x^15). (End)
MATHEMATICA
PowerMod[Range[0, 90], 3, 15] (* or *) PadRight[{}, 90, {0, 1, 8, 12, 4, 5, 6, 13, 2, 9, 10, 11, 3, 7, 14}] (* Harvey P. Dale, Jan 27 2014 *)
Table[Mod[n^3, 15], {n, 0, 100}] (* Vincenzo Librandi, Jun 19 2014 *)
PROG
(Sage) [power_mod(n, 3, 15) for n in range(0, 90)] # Zerinvary Lajos, Oct 29 2009
(Magma) [Modexp(n, 3, 15): n in [0..100]]; // Vincenzo Librandi, Mar 28 2016
(PARI) a(n)=n^3%15 \\ Charles R Greathouse IV, Apr 06 2016
CROSSREFS
Sequence in context: A172391 A227239 A037449 * A070697 A004473 A114404
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 12 2002
STATUS
approved