login
A070335
a(n) = 2^n mod 23.
4
1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1, 2, 4
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
FORMULA
From R. J. Mathar, Apr 13 2010: (Start)
a(n) = a(n-11).
G.f.: (1 + 2*x + 4*x^2 + 8*x^3 + 16*x^4 + 9*x^5 + 18*x^6 + 13*x^7 + 3*x^8 + 6*x^9 + 12*x^10)/ ((1-x) * (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10)). (End)
MAPLE
A070335 := proc(n) op(1+(n mod 11), [1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12]) ; end proc: # R. J. Mathar, Feb 05 2011
MATHEMATICA
PowerMod[2, Range[0, 50], 23] (* G. C. Greubel, Mar 13 2016 *)
PROG
(Sage) [power_mod(2, n, 23) for n in range(0, 80)] # Zerinvary Lajos, Nov 03 2009
(PARI) a(n)=lift(Mod(2, 23)^n) \\ Charles R Greathouse IV, Apr 06 2016
(GAP) a:=List([0..70], n->PowerMod(2, n, 23));; Print(a); # Muniru A Asiru, Jan 26 2019
CROSSREFS
Sequence in context: A119318 A082953 A009289 * A277846 A277845 A277858
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 12 2002
STATUS
approved