

A070275


Numbers n such that sum of digits of n equals the sum of prime divisors of n.


0



2, 3, 5, 7, 84, 160, 250, 336, 468, 735, 936, 975, 1344, 1375, 1408, 1600, 1694, 1872, 2352, 2401, 2500, 2625, 2808, 3744, 3920, 4116, 4913, 5145, 5616, 6084, 6318, 7296, 7497, 7695, 8424, 8624, 8664, 8704, 9126, 9639, 10240, 12168, 12636, 12675, 14896
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

If n=10^s*m is a term of the sequence where s>0 and gcd(m,10)=1, then for each positive integer k, 10^k*m is in the sequence. Because sum of the digits of 10^k*n equals to sum of the digits of n and sum of the distinct prime factors of 10^k*n equals to sum of the distinct prime factors of n. Also it is obvious that m isn't in the sequence. [Jahangeer Kholdi, Oct 07 2013]


LINKS

Table of n, a(n) for n=1..45.


MATHEMATICA

Rest[Select[Range[20000], Total[Transpose[FactorInteger[#]][[1]]]==Total[IntegerDigits[#]]&]] [from Harvey P. Dale, Dec. 15, 2010]


CROSSREFS

Sequence in context: A029976 A074310 A264576 * A171042 A068827 A076406
Adjacent sequences: A070272 A070273 A070274 * A070276 A070277 A070278


KEYWORD

easy,nonn,base


AUTHOR

Benoit Cloitre, May 09 2002


STATUS

approved



